Peer Reviewed Draft

Synthesis and Assessment Product 4.2
Thresholds of Change in Ecosystems


Contributing authors: Brandon T. Bestelmeyer, Julio L. Betancourt, Jeffrey E. Herrick, and Douglas S. Kenney

U.S. Climate Change Science Program
Table of Contents

1 Executive Summary ............................................................................................................ 5
2 Introduction ................................................................................................................... 5
3 Definitions ..................................................................................................................... 5
4 Development of Threshold Concepts ............................................................................ 6
5 Principles of Thresholds ............................................................................................... 7
6 Case Studies .................................................................................................................. 8
7 Potential Management Responses ............................................................................... 10
8 Recommendations ....................................................................................................... 12
9 Chapter 1—Introduction and Background ........................................................................ 14
10 1.1 A Sudden Change in Ecological Systems ............................................................. 14
11 1.2 The Response of the Climate Change Community .............................................. 16
12 1.3 The Goal of SAP 4.2 ............................................................................................. 19
13 Chapter 2—Ecological Thresholds ................................................................................... 22
14 2.1 Introduction ........................................................................................................... 22
15 2.2 Early Development ............................................................................................... 23
16 2.3 Current Discussion of Threshold Phenomena ....................................................... 26
17 2.4 Ecological Thresholds Defined for SAP 4.2 ......................................................... 29
18 2.5 Factors that Influence Persistence, Resilience, and Robustness ......................... 31
19 2.6 The Bottom Line .................................................................................................. 33
20 Chapter 3—Case Studies .................................................................................................. 36
21 Case Study 1. Ecological Thresholds in Alaska ............................................................ 36
Case Study 2. The Mid-Continent Prairie Pothole Region: Threshold Responses to Climate Change................................................................. 49
Case Study 3. Massive Forest Die-Back as a Response to Climate Change .......... 55
Case Study 4. Thresholds in Climate Change for Coral-Reef Ecosystem Functioning ..................................................................................................... 65
Chapter 4—Examples of Threshold Change in Ecosystems ............................................ 75
4.1 Background ........................................................................................................... 75
4.2 Evidence of Thresholds from the Past ................................................................. 75
4.3 Evidence of Sensitivity to Current Stressors ........................................................ 77
4.3.1 Temperature Increase ................................................................................... 77
4.3.2 Moisture Availability .................................................................................... 79
4.3.3 Climate Interactions ..................................................................................... 79
4.3.4 Climatic Variability Increases........................................................................ 80
4.3.5 Multiple Stressors and Climate Change......................................................... 81
4.3.6 Disturbance Regimes and Climate Change.................................................. 86
Chapter 5—What Can Be Done? ...................................................................................... 89
5.1 Integration of Management and Research ............................................................ 89
5.1.1 Need for Conceptual Models ...................................................................... 89
5.1.2 Scaling .......................................................................................................... 90
5.1.3 Apply Models from Other Disciplines ......................................................... 93
5.2 Adaptive Management ....................................................................................... 94
5.2.1 Role of Monitoring ..................................................................................... 95
5.2.2 Role of Experiments .................................................................................... 97
Executive Summary

Introduction

In the past three decades, climate change has become a pronounced driver of ecosystem change. Changes in phenology, range shifts of species, and increases in disturbances such as wildland fires have all reflected ecosystem scale responses to a warming biosphere. There have also been abrupt, nonlinear changes in ecosystems where the levels of response to incremental increases in global temperature have suddenly changed trajectories. These thresholds of ecological change are not well understood but are potentially critical to adaptation strategies for managing natural resources in a rapidly changing world. Sudden, unanticipated shifts in ecosystem dynamics make planning and preparation by managers intensely difficult. One of the primary goals of the ecosystems research element and of goal 4 of the Climate Change Science Program (CCSP) is to enhance the understanding and ability to predict and forecast effects of climate change on ecosystems. This synthesis is intended to evaluate the current state of understanding of thresholds and recommend possible actions to improve knowledge and adjust management priorities even with incomplete understanding of what drives thresholds of change and when they will occur. The focus is on North American ecosystem threshold changes and what they mean for human society.

Definitions

This report defines an ecological threshold as the point where there is an abrupt change in an ecosystem quality, property, or phenomenon or where small changes in an environmental driver produce large, persistent responses in an ecosystem, which is not likely to return to the previous more stable state. Fundamental to this definition is the idea
that positive feedbacks or instabilities drive the domino-like propagation of change that is therefore potentially irreversible.

“Systemic” risk or risk that affects the whole organism (ecosystem or economic system), not just isolated parts, provides a useful example. It corresponds to widespread coordinated system failure characterized by a catastrophic change in the overall state of the system. Again, such run-away changes are propagated by positive feedbacks (nonlinear instabilities) that are often hidden in the complex web of interconnected parts. They may be slower to recover than to collapse, and they may be irreversible in that the original state may not be fully recoverable.

Development of Threshold Concepts

Because the original ideas supporting ecological thresholds evolved as largely theoretical concepts based on simple model examples, there have been difficulties translating these mathematical ideas to field scenarios to establish a solid empirical basis for documenting and understanding them. Even though the connection of our informal thinking about threshold transitions to more rigorous theory is sometimes not as clear it should be, there are numerous examples of sudden ecological change that fit our current qualitative definition, and that more specifically were likely triggered by climatic changes such as warming temperatures. A clear example from the arctic tundra can be seen in the effects of warmer temperatures reducing snow cover duration, leading to reduced albedo (i.e., reflectivity of the landscape), great absorption of solar energy, and local warming, accelerating the loss of snow cover. This amplified, positive feedback effect quickly leads to warmer conditions that foster invasion of shrubs into the tundra and the new shrubs themselves further reduce albedo and add to the local warming. The net result is a
relatively sudden domino-like conversion of the arctic tundra triggered by a relatively slight temperature increase.

Principles of Thresholds

Systems consist of mixtures of positive and negative feedbacks, with positive feedbacks tending to alter the nature of the system, and negative feedbacks tending to minimize these changes (Chapin et al., 1996). Changes that strengthen positive feedbacks (e.g., invasion and spread of a highly flammable grass in deserts) can lead to a change in conditions (e.g., fire regime) that may exceed the tolerance of other components of the system, leading to threshold changes.

Ecosystems tend to be at some maximum capacity, controlled by limiting factors such as water-limited net primary productivity in the case of terrestrial ecosystems. Persistant drought greatly increases positive feedback strength of the limiting factors to the threshold of plant physiological tolerance, leading to system change, until a new state (with different, more drought-tolerant species) is achieved where negative feedbacks again minimize changes.

Complex interactions between multiple feedbacks can lead to even greater nonlinear changes in dynamics (e.g., interaction of drought and overgrazing together triggering desertification). The situations are often beyond forecasting or predictive capabilities, creating surprises for managers.

Disturbance mechanisms, such as fire and insect outbreaks, shape many landscapes and may predispose many of them to threshold change when the additional stress of climate change is added.
Climate change will alter the disturbance mechanisms themselves (e.g. more frequent fire) and, on a global scale, altered disturbance regimes may influence rates of climate change (e.g. fires releasing more carbon dioxide).

Human actions (e.g. introducing exotic, invasive plants) interact with natural drivers of change (e.g. ecotonal shifts in response to drought) to produce complex changes in ecosystems that have important implications for the services provided by the ecosystems.

Case Studies

Selected case studies provided below give concrete examples of threshold principles and underscore the complexities of change that provide daunting challenges for natural resource managers.

In recent decades, Alaska has warmed at more than twice the rate of the rest of the United States. This has caused earlier snowmelt in the spring (Dye, 2002; Stone et al., 2002; Dye and Tucker, 2003; Euskirchen et al., 2006, 2007), a reduction of sea ice coverage (Stroeve et al., 2005), a retreat of many glaciers (Hinzman et al., 2005), and a warming of permafrost (Osterkamp 2007). Consequently, increases in the frequency and spatial extent of insect disturbance and wildfire, dramatic changes in the wetlands of interior Alaska, vegetation changes in the tundra of northern Alaska, and ecological changes that are affecting fisheries in the Bering Sea have occurred. These changes have reflected threshold-like behavior. For instance, during the 1990s, south-central Alaska experienced the largest outbreak of spruce bark beetles in the world (Juday et al., 2005). A response to milder winters and warmer temperatures increased the over-winter survival of the spruce bark beetle and allowed the bark beetle to complete its life cycle in 1 year.
instead of the normal 2 years. This was superimposed on 9 years of drought stress between 1989 and 1997, which resulted in spruce trees that were too distressed to fight off the infestation. This illustrates the principle of multiple climate-triggered stresses amplifying each others’ effects to cause a profound ecosystem change.

The Prairie Pothole Region (PPR) of north-central North America is one of the most ecologically valuable freshwater resources of the Nation (van der Valk 1989) and contains 5-8 million wetlands which provides critical habitat for continental waterfowl populations and provides numerous valuable ecosystem services for the region and nation. PPR wetlands are also highly vulnerable to climate change. A warmer, drier climate is indicated by general circulation models for the PPR (Ojima and Lackett 2002). This will affect wetland hydroperiod, ratio of emergent plant cover to open water, species composition, wetland permanence, and primary and secondary productivity, among others (van der Valk 1989). In an analysis of impacts on prairie wetland distribution across this region, Carter et al., (2005) reported a large reduction in optimal waterfowl breeding habitat with a 3°C warming and almost complete elimination of habitat if precipitation declines by 20% as well. Such a threshold change to a major waterfowl flyway would permanently impact a vital resource of the U.S.

Semiarid forests and woodlands in the southwestern U.S. respond strongly to climate-driven variation in water-availability, with major pulses of woody plant establishment and mortality commonly corresponding to wet and dry periods (Swetnam and Betancourt 1998). Higher temperatures, coupled with drier mean conditions, means more frequent water stress for vegetation. Climate change-induced water stress can trigger rapid, extensive, and dramatic forest dieback (Breshears et al. 2005), shift
ecotones between vegetation types (Allen and Breshears 1998) and alter regional
distributions of overstory and understory vegetation (Gitlin et al. 2006, Rich et al. 2008).
Rapid forest dieback also has nonlinear feedbacks at multiple spatial scales with other
ecological disturbance processes such as fire and erosion (Allen 2007), potentially
leading to additional nonlinear threshold behaviors. Massive forest mortality is an
example of a threshold phenomenon with substantial implications for management of
lands undergoing such changes (Millar et al. 2007).

_Potential Management Responses_

If climate change is pushing more ecosystems toward thresholds, what can be
done by federal land managers and others to better cope with the threat of transformative
change? The SAP 4.2 committee identified potential actions below that are further
explained in this report.

*Develop Better Threshold Knowledge.*—While conceptually robust and widely
acknowledged as occurring already, thresholds have had relatively few empirical studies
addressing them. Reliable identification of thresholds across different systems should be
a national priority because of the potential for substantive surprises in the management of
our natural resources.

*Monitor Multiple Drivers.*—Consideration should be given to monitoring
indicators of ecosystem stress rather than solely the resources and ecological services of
management interest.

*Collate and Integrate Information Better at Different Scales.*—Because agencies
and institutions have different management mandates, there can be a focus on those
resources to the exclusion of others but better information sharing has great potential for
better understanding thresholds and identifying when they might occur.

Reduce Other Stressors.—The trigger points for abrupt change in ecosystems that
are responding to climate change are rarely known because human civilizations have not
witnessed climate change of this magnitude. However, other stressors for which reliable
information exists can be reduced.

Manage Threshold Shifts.—There may be constraints to reducing or reversing
climate change-induced stresses to components of an ecosystem. If a threshold seems
likely to occur but the uncertainties remain high as to when it will occur, contingency
plans should be created. These can be implemented when the threshold shift begins to
occur or can be carried out in advance if the threshold is clear.

Project Impacts to Water Supply, Biodiversity, and Resource Extraction.—There
are many efforts to project climate change (e.g., GCMs) and ecosystem responses to
climate change (e.g., mapped atmosphere-plant-soil systems) using simulation modeling
and other tools. These models generally project ecosystem trends and shifts, but do not
explicitly consider the possibility of thresholds. A concerted effort must be made to
understand, model, and project ecosystem responses to climate change with explicit
acknowledgment of thresholds.

Recognize Need for Subcontinental Decisionmaking.—Much of the recent
information on climate change impacts suggests that changes are occurring more quickly
than forecast only a few years ago. It is also apparent that many changes are causing
secondary, or cascading, changes in other parts of ecosystems. Management policies,
which were developed during relatively stable climate conditions, may be inadequate for
a variable world with more surprises. To meet these challenges, there must be a shift away from managing locally and toward larger scales of information integration and subsequent decisionmaking.

*Instigate Institutional Change To Increase Adaptive Capacity.*—The current institutional structure promotes disciplinary and jurisdictional isolation by agencies and, therefore, does not lead to much synthesis across resources or issues. The capacity for synthesis will be critical for identifying potential thresholds in ecosystem processes on multiple scales.

*Identify Recommendations for Monitoring and Research.*—The major research needs and priorities that will enhance the ability in the future to forecast and detect abrupt changes in ecosystems caused by climate change must be articulated. The ubiquity of threshold problems across so many fields suggests the possibility of finding common principles at work. The cross-cutting nature of the problem of large-scale system change suggests an unusual opportunity to leverage effort from other fields and apply it to investigating systemic risk of crossing thresholds.

*Recommendations*

To better prepare for ecological threshold crossings, there is a need to increase resilience of ecosystems to slow or prevent the crossing of thresholds, identify early warning signals of impending threshold changes, and employ adaptive management strategies to deal with new successional trajectories and combinations of species. Better integration of existing monitoring information across great spatial scales will be needed to detect potential thresholds, and research will need to focus on ecosystems undergoing a threshold shift to better understand the underlying processes. Finally, natural resource
managers will have to adjust their goals for desired states of resources away from historic
benchmarks that are not likely to be achieved in a world being altered by climate change.
Chapter 1—Introduction and Background

1.1 The Problem of Sudden Change in Ecological Systems

The carbon dioxide (CO\textsubscript{2}) concentration in the Earth’s atmosphere has reached 385 parts per million (ppm), a level that is unprecedented over the past one-half million years (based on ice core data) to 24 million years (based on soil data) (Hoegh-Guldberget al. et al. 2007). CO\textsubscript{2} levels have been increasing during the past 150 years, with most of the change occurring in just the past few decades. Global mean temperature has risen in response to increased CO\textsubscript{2} concentration and is now higher than at any time in the past 1,000 years (based on tree rings) to 160,000 years [based on oxygen 18 (\textsuperscript{18}O) and deuterium (D) isotopes in ice]. The relatively sudden increase in the energy balance of the planet has led to abrupt global climate changes that alter physical processes and biological systems on many scales and will certainly affect ecosystems that support human society. One of the ways that a rapidly changing climate will affect ecosystems is by causing sudden, irreversible effects that fundamentally change the function and structure of the ecosystem with potentially huge impacts to human society.

Even small, gradual change can induce threshold changes. For instance, in 1976-77, major shifts occurred in sea surface temperatures, fisheries landings, zooplankton abundance, and community composition in the North Pacific (Hare and Mantua, 2000). Later analysis suggested that nonlinear regime shifts operate in this ecosystem, such that even small changes in physical conditions (for example, an increase in temperature from global warming) can provoke a regime shift that may not be easily or symmetrically reversed (Hsiehet al. et al. 2006). This tendency can be compounded by additional environmental stressors that predispose ecosystems to experience threshold changes in
response to climate change. For example, in North America in the late 1990s, forests, woodlands, grasslands, and shrublands exhibited extensive dieback across the arid southwestern United States as overgrazing, fire suppression, and climate variability led to massive insect outbreaks and an unprecedented breadth of area consumed by fire (Allen, 2007).

Abrupt changes in ecosystems may result in dramatic reductions in ecosystem services, such as water supplies for human use. In the Klamath River basin in the Pacific Northwest, for example, the delicate socioecological balance of water allocation between needs for irrigated agriculture and habitat for endangered species of fish, which had been established in 1902, collapsed in 2002 during a multiyear drought because the system’s resilience to maintain water quality in the face of climatic variability was degraded by long-term nutrient loading.

Thresholds pose perhaps the greatest challenge currently facing climate change scientists. There is clear evidence that climate change has the potential to increase threshold changes in a wide range of ecosystems, but the basic and practical science necessary to predict and manage these changes is not well developed (Groffman et al. 2006). In addition, climate change interacts with other natural processes to produce threshold changes. Disturbance mechanisms, such as fire and insect outbreaks (Krutzen and Goldammer 1993, Lovett et al. 2002, respectively), shape landscapes and may predispose many of them to threshold change when the additional stress of climate change is added (Swetnam and Betancourt 1998). To complicate matters further, climate change can alter the disturbance mechanisms themselves and, on a global scale, altered disturbance regimes may influence rates of climate change. Another challenge is the
multidisciplinary nature of threshold changes. These changes almost always involve coupled socioecological dynamics where human actions interact with natural drivers of change to produce complex changes in ecosystems that have important implications for the services provided by the ecosystems (Wamelink et al. 2003).

A sense of urgency regarding thresholds exists because of the increasing pace of change, the changing features of the drivers that lead to thresholds, the increasing vulnerabilities of ecosystem services, and the challenges the existence of thresholds poses for natural resource management. These challenges include the potential for major disruption of ecosystem services and the possibility of social upheaval that might occur as new ways to manage and adapt for climate change and to cope with the unanticipated change are required.

Research on ecological thresholds is being assessed critically. The Heinz Center conducted several workshops that presented case studies of likely threshold change and began looking at possible social and policy responses. Another study included numerous case studies focused on nonlinearities in ecological systems (Burketet al. et al. 2005) and considered how thresholds are nonlinear responses to climate change. Recently, specific requests for proposals have been issued for research on thresholds (for example, see es.epa.gov/ncer/rfa/2004/2004_aqua_sys.html), and there are active efforts to bridge the gap between research and application in this area (see, for example, www.ecothresholds.org). Assessment of the “state of the science” as it relates to ecosystems in the United States and for articulation of critical research needs is needed.

1.2 The Response of the Climate Change Community
Climate change is a very complex issue, and policymakers need an objective source of information about the causes of climate change, its potential environmental and socioeconomic consequences, and the adaptation and mitigation strategies to respond to the effects of climate change. In 1979, the first World Climate Conference was organized by the World Meteorological Organization (WMO). This conference expressed concern about man’s activities on Earth and the potential to “cause significant extended regional and even global changes of climate” and called for “global cooperation to explore the possible future course of global climate and to take this new understanding into account in planning for the future development of human society.” A subsequent conference in 1985 focused on the assessment of the role of CO₂ and other greenhouse gases in climate variations and associated impacts, concluding that an increase of global mean temperature could occur that would be greater than at any time in humanity’s history. As a follow up to this conference, the Advisory Group on Greenhouse Gases (AGGG), a precursor to the Intergovernmental Panel on Climate Change (IPCC), was set up to ensure periodic assessments of the state of scientific knowledge on climate change and the implications of climate change for society. Recognizing the need for objective, balanced, and internationally coordinated scientific assessment of the understanding of the effects of increasing concentrations of greenhouse gases on the Earth’s climate and on ways in which these changes may potentially affect socioeconomic patterns, the WMO and the United Nations Environment Programme (UNEP) coordinated to establish an ad hoc intergovernmental mechanism to provide scientific assessments of climate change. Thus, in 1988, the IPCC was established to provide decisionmakers and others interested in climate change with an objective source of information about climate change.
The role of the IPCC is to assess on a comprehensive, objective, open, and transparent basis the scientific, technical, and socioeconomic information relevant to understanding the scientific basis of risk of human-induced climate change, its potential impacts, and options for adaptation and mitigation and to provide reports on a periodic basis that reflect existing viewpoints within the scientific community. Because of the intergovernmental nature of the IPCC, the reports provide decisionmakers with policy-relevant information in a policy neutral way. The first IPCC report was published in 1990, with subsequent reports published in 1995, 2003, and 2007.

In 1989, the U.S. Global Change Research Program (USGCRP) began as a Presidential initiative and was codified by Congress in the Global Change Research Act of 1990 (Pub.L. 101–606), which mandates development of a coordinated interagency research program. The Climate Change Science Program (CCSP) (www.climatescience.gov), a consortium of Federal agencies that perform climate science, integrates the research activities of the USGCRP with the U.S. Climate Change Research Initiative (CCRI).

The CCSP integrates federally supported research on global change and climate change as conducted by the 13 U.S. Government departments and agencies involved in climate science. To provide an open and transparent process for assessing the state of scientific information relevant to understanding climate change, the CCSP established a synthesis and assessment program as part of its strategic plan. A primary objective of the CCSP is to provide the best science-based knowledge possible to support public discussion and government and private sector decisionmaking on the risks and opportunities associated with changes in the climate and related environmental systems.
The CCSP has identified an initial set of 21 synthesis and assessment products (SAPs) that address the highest priority research, observation, and decision-support needs to advance decisionmaking on climate change-related issues. This assessment, SAP 4.2, focuses on abrupt ecological responses to climate change, or thresholds of ecological change. It examines the impacts to ecosystems when thresholds are crossed. It does not address those ecological changes that are caused by major disturbances, such as hurricanes. These externally driven changes, or exogenous triggers, are distinguished from changes caused by shifts in the ecosystem’s response to a driver, such as a gradual rise in temperature. These internal changes in system response, or endogenous triggers, are the focus of this SAP. This SAP is one of seven reports that address the Ecosystems research element and Goal 4 of the CCSP strategic plan to understand the sensitivity and adaptability of different natural and managed ecosystems and human systems to climate and related global changes.

1.3 The Goal of SAP 4.2

This SAP summarizes the present state of scientific understanding regarding potential abrupt state changes or regime shifts in ecosystems in response to climate change. The goal is to identify specific difficulties or shortcomings in our current ability to identify the likelihood of abrupt state changes in ecosystems as a consequence of climate change.

Questions addressed by this SAP include:

1. What specifically is meant by abrupt state changes or regime shifts in the structure and function of ecosystems in response to climate change?
2. What evidence is available from current ecological theory, ecological modeling studies, or the paleoecological record that abrupt changes in ecosystems are likely to occur in response to climate change?

3. Are some ecosystems more likely to exhibit abrupt state changes or threshold responses to climate change?

4. If abrupt changes are likely to occur in ecosystems in response to climate change, what does this imply about the ability of ecosystems to provide a continuing supply of ecosystem goods and services to meet the needs of humans?

5. If there is a high potential for abrupt or threshold-type changes in ecosystems in response to climate change, what changes must be made in existing management models, premises, and practices in order to manage these systems in a sustainable, resilient manner?

6. How can monitoring systems be designed and implemented, at various spatial scales, in order to detect and anticipate abrupt or threshold changes in ecosystems in response to future climate change?

7. What are the major research needs and priorities that will enhance the ability in the future to forecast and detect abrupt changes in ecosystems caused by climate change?

1.4 Standard Terms

The 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) (IPCC, 2007) is the most comprehensive and up-to-date report on the scientific assessment of climate change. This assessment (SAP 4.2) uses the standard terms defined in the IPCC’s AR4 with respect to the treatment of uncertainty and the
likelihood of an outcome or result based on expert judgment about the state of that knowledge. The definitions are shown in figure 1.1. This set of definitions is for descriptive purposes only and is not a quantitative approach from which probabilities relating to uncertainty can be derived.

Figure 1.1. Degrees of outcome likelihood as defined in the IPCC’s Fourth Assessment Report (AR4) (IPCC, 2007).
Chapter 2—Ecological Thresholds

2.1 Introduction

Temperature, precipitation, and related climate variables are fundamental regulators of biological processes and it is reasonable to expect that significant changes in the climate system may alter linkages and feedbacks between ecosystems and regional climate systems. Increasing focus is being placed on the existence and likelihood of abrupt state changes or threshold responses in the structure and functioning of ecosystems (Holling, 1986; Scheffer et al., 2001; Hiigas et al. 2002; Foley et al. 2003; Schneider, 2004; Burkett et al. 2005; Hsiet al. 2005). Various interrelated terms are employed in the scientific literature to characterize these types of discontinuous and rapid changes in ecosystems, including ecosystem tipping points, regime shifts, threshold responses, alternative or multiple stable states, and abrupt state changes. Our current understanding of thresholds and ecosystem responses makes it unlikely that we can predict such discontinuities in ecosystems, and these discontinuities are likely to result in profound changes to natural resources that are sensitive to climate changes, as well as to human societies that depend on ecosystem goods and services, this assessment, based on the literature and the synthesis teams' expertise, indicates that thresholds are likely to represent large-scale risk and uncertainty and can likely be a major challenge to natural resource managers.

Abrupt transitions have occurred in numerous ecosystems where incremental increases in global temperature have produced sudden and dramatic changes in the state of and the dynamics governing these systems (Anderson et al. 2008). These thresholds of magnified ecological change are a consequence of the underlying nonlinear nature of
ecosystems and are very likely critical to adaptation strategies for managing natural resources in a rapidly changing world. Sudden, unanticipated shifts in ecosystem dynamics are a major source of risk and uncertainty for managers and make planning and preparation difficult. One of the primary objectives of this report (SAP 4.2) is to enhance the understanding and ability of managers to predict and forecast the effects of climate change on ecosystems.

As discussed elsewhere in this chapter, the occurrence of threshold, or abrupt changes in ecosystems, is suggested by current ecological theory and models, and is documented with laboratory and field examples and even in the paleoecological record. However, on a predictive level, thresholds remain poorly understood, particularly in terms of the underlying causal mechanisms and the general factors that predispose systems to threshold effects. For example, it is unclear under what circumstances climate change, both in its mean state and in its variance in space and time, including occurrence of extreme weather events, might cause ecosystem threshold shifts, instead of more gradual, continuous changes in ecosystems and species. Further, it is not known what the resulting effects of climate thresholds on ecosystems will be. Thus, while the phenomenology of rapid transitions in ecosystems is clear, reaching a level of understanding that enables one to anticipate or actually predict threshold effects is the main bottleneck to producing results useful to managers (Muradian, 2001; Bestelmeyer, 2006; Groffman et al. et al. 2006; Kinzig et al. et al. 2006).

2.2 Early Development

The concepts of ecological thresholds, multiple stable states, and regime shifts originated in early theoretical work on the stability or persistence of ecosystems.
(Margalef, 1963; Lewontin, 1969; Odum, 1969; Holling, 1973; May 1973, 1977). The two key components of stability were considered to be the system’s “resilience,” or the speed at which it would return to its current “stable equilibrium”, and its “resistance,” or ability to maintain its current “stable” state in the face of disturbance of a given magnitude. According to this early thinking, given enough disturbance, systems could be pushed into alternative stable states. This theoretical work was complemented (however sparsely) with early empirical demonstrations of multiple stable states in marine experimental systems (Sutherland, 1974) and with field data combined with model analysis for terrestrial ecosystems (Ludwig et al. 1978).

“Stability” as a well-defined mathematical concept was central to these early theoretical discussions of thresholds. Lewontin (1969) reviewed mathematical models of stability and discussed the forces required to move an ecosystem out of a basin of attraction or stable state. May (1973) presented a precise definition of stability and a crater and ball analogy to illustrate the concepts and later (1977) focused attention on the existence of alternative stable states and multiple equilibrium points with an emphasis on the thresholds between them. Holling (1973) drew attention to the ability of ecosystems to absorb and respond to disturbance and introduced the concept of robustness (although he used the term resilience). Again, robustness focuses on dynamics far from equilibrium and was used to measure the magnitude of perturbations from which recovery of a system was no longer possible.

Although mathematically tractable and well defined in static engineering contexts, “stability” and the implication of “equilibrium” in ecological systems began gradually to give way in the 1990s to growing evidence that real ecological systems are not static nor
even well approximated, as such. Notions of stable equilibrium, which continue to
dominate much of our thinking and research to date (for example, Maximum Sustainable
Yield as written into the 2006 reauthorization of the Magnusson-Stevens Act), are based
on models and controlled experiments (for example, on paramecia and flour beetles) from
the middle of the last century where singular static equilibrium was the ideal. Cracks in
the equilibrium view began to appear as quantitative evidence mounted from natural
systems, that “change” rather than “constancy” is the rule, and that nonlinear instability,
thresholds, and chaos can be ubiquitous in nature (Dublinet al.al. 1990; Sugihara and
1993; and Sugihara 1994). The possibility that so-called “pathological” nonequilibrium,
nonlinear behaviors seen in theoretical treatments could be the rule in nature as opposed
to a mathematical curiosity, opened the door for credible studies of thresholds. Indeed,
now threshold changes appear to be everywhere. Recognition and documentation of
sudden, not readily reversible changes in ecosystem structure and function have become a
major research focus during the past 10 to 20 years (Schefferet al.al. 2001; Scheffer
and Carpenter, 2003).

Perhaps the most important driver of the current interest in nonlinear ecosystem
behavior and, in particular, threshold effects has been the recognition of the importance
of indirect effects of climate change. Although much climate change research has
focused on the direct effects of long-term changes in climate on the structure and function
of ecosystems, there has been increasing recognition that the most dramatic consequences
of climate change may occur as a result of indirect effects, including threshold changes
(Vitousek, 1994; Carpenter, 2002; Schneider, 2004).
2.3 Current Discussions of Threshold Phenomena

As ecologists were exploring the existence of alternative stable states in ecosystems, oceanographers were documenting the impacts of major climatic events on the North Atlantic Ocean (Steele and Henderson, 1984), North Pacific Ocean, and Bering Sea ecosystems. They eventually used the term “regime shift” to describe the sudden shifts in biota that are driven by ocean climate events (Steele, 1996; Hare and Mantua, 2000). More recently, for the California Current Ecosystem (CCE), regime shifts in the biota have been distinguished from random excursions in the ocean climate based on the nonlinear signature of the time series (Hsieh et al. et al. 2006). The main idea here is that regimes represent different rules governing local dynamics (that is, they depend on environmental context), and that nonlinear instabilities (latent positive feedbacks) drive the system across thresholds into different dynamical domains. Thus, regime shifts in marine ecosystems are an amplified biological response to ocean climate variation (mainly temperature variation) rather than a simple tracking of environmental variation (Anderson et al. et al. 2008). On the other hand, ocean climate for the CCE in the 20th century did not have this nonlinear signature insofar as the dynamical rules were the same in both warm and cold periods. Hsieh and others (2006) and Anderson and others (2008) suggest nonlinear forecasting methods as a rigorous way to make this distinction that avoids the circularities of statistical methods for detecting regimes and thresholds. The dynamics of regime shifts are considered to be the essential fingerprint. Current interest in regime shifts and thresholds in marine science have focused on understanding the factors that determine thresholds and on ways of extracting dynamics from observational data to make predictions.
Muradian (2001) and Walkers and Meyers (2004) used a definition of regime shift
developed by Sheffer and Carpenter (2003) emphasizing changes in the threshold level of
a controlling variable in a system, such that the nature and extent of feedbacks change
and result in a change in the system itself (which was based on Rene Thom’s (1975) fold
catastrophe model). Scheffer and Carpenter (2003) built on work in shallow lakes to
demonstrate empirically the concept of threshold-like hysteric change and used these
examples to further reinforce the idea that ecosystems are never stable but are dynamic
and that fluctuations (in populations, environmental conditions, or ecosystems) are more
the rule than not.

Given the move in thinking among many ecologists toward nonequilibrium and
unstable dynamics, the broader technical concept that may eventually replace
“equilibrium” in this context is a more general notion concept that includes equilibrium,
stable limit cycles, and nonequilibrium dynamics or chaos (Sugihara and May, 1990;
Hsiehet al.et al. 2006). Depending on whether the control variable is thought of as part of
the system (an intrinsic coordinate of the state space) or as external to the system (an
extrinsic variable), threshold behavior may be thought of as a ridge of instability that
separates control variables. From a more descriptive point of view, the idea suggests that
there are particular states or characteristic combinations of species (grasslands, chapparel,
oak-hickory forests, and so forth) that make up the biological component, and that
ecosystem thresholds can be identified in the physical part of the system. Part of the
nonlinearity or nonequilibrium nature of ecosystems comes from the fact that the biology
(especially the dynamics) of the system is contingent on its own particular state (suite and
abundance of species), as well as on the physical context in which it resides.
The field of range science has a parallel and largely independent literature on thresholds, resilience, regime shifts, and alternative stable states that has engendered a lively debate over how these terms are used in that field. Bestelmeyer (2006) argued that there is a lack of clarity in the use of the term “threshold” and its application to state-and-transition models (STMs) used in range management. STM’s describe alternative states and the nature of thresholds between states. Bestelmeyer’s argument reflects a broad lack of consensus or understanding among range scientists about how best to define and use the threshold concept. Watson and others (1996) criticized a focus on the consequences of threshold shifts at the expense of the processes that precede them. Many definitions of threshold phenomena emphasize relatively rapid, discontinuous phenomena (for example, Wissel, 1984, and Denoel and Ficetola, 2007). Others emphasize the points of instability at which systems collapse (Radford et al. 2005), or the point at which even small changes in environmental conditions lead to large changes in state variables (Suding et al. 2004). Still other definitions emphasize changes in controlling variables. According to Walker and Meyers (2004), “a regime shift involving alternative stable states occurs when a threshold level of a controlling variable in a system is passed.”

There is clearly a need in range science for more rigorous and consistent use and application of the ecological threshold concept and its associated terminology. One point of consensus underlying both the theoretical and empirical approaches to the topic of thresholds is that changes from one ecological condition to another take place around specific points or boundaries. But further advancement and agreement is limited by the small number of empirical studies that address this topic. Some believe that further advancement will depend on rigorous statistical testing for reliable identification of
thresholds across different systems (Huggett, 2005), while many in fields outside of range
science see the danger of circularity in such arguments and suggest dynamic tests for
determining threshold behavior (Hsiehet al. et al. 2005).

2.4 Ecological Thresholds Defined for SAP 4.2

Because of the variety of ways that the concept of thresholds has been developed,
this assessment (SAP 4.2) uses the following general definition of ecological thresholds:

An ecological threshold is the point at which there is an abrupt change in an ecosystem
quality, property, or phenomenon, or where small changes in an environmental driver
produce large, persistent responses in an ecosystem. Fundamental to this definition is the
idea that positive feedbacks or nonlinear instabilities drive the domino-like propagation
of change that is potentially irreversible.

In line with this definition, threshold phenomena are particular nonlinear
behaviors that involve a rapid shift from one ecosystem state (or dynamic regime) to
another that is the result of (or that provokes) instability in any ecosystem quality,
property, or phenomenon. Such instability always involves nonlinear amplification
(positive feedback in some form) and is often the result of the particular structure of the
interactions or the complex web of interactions. This definition distinguishes thresholds
from other biological changes that are simple responses to external environmental
change. Thus, bifurcation cascades (the point in which events take one of two possible
directions with important final consequences, making dynamical systems evolve in a non-
linear way with successive disruptions/divergences/breaks from previous trends),
nonlinear amplification (Dixonet al. et al. 1999), hysteresis, and the propagation of
positive feedback (instabilities) through complex webs of interactions are all interrelated
attributes that fit our general working definition of threshold phenomena.

“Systemic” risk, or risk that affects the whole ecosystem rather than just isolated parts of the system provides a useful analogy. Systemic risk corresponds to widespread change in an ecosystem characterized by a break from previous trends in the overall state of the system. Runaway changes are propagated by positive feedbacks (nonlinear instabilities) that are often hidden in the complex web of interconnected parts. The changes may be hysteretic in the sense that recovery may be much slower to achieve than the collapse, and they may be irreversible in that the original state may not be fully recoverable (Chapin et al. 1995).

Other specific examples of threshold crossings or transitions that illustrate this definition are (following Groffman, 2006)—

1. The interactions of drought and overgrazing that trigger runaway desertification.
2. The exceeding of some critical load, as with the toxicity limit of a contaminant or elimination of a keystone species by grazing, so that when one component of the system fails, it provokes a domino-like cascade of instability that substantially alters the rest of the system.

These and other examples are discussed in more detail in the case studies presented in Chapter 3.

These simplistic metaphors for our concept of threshold transitions include so-called bifurcation cascades where, for example, small changes in a controlling variable, such that the nature and extent of feedbacks change, leads to a sudden destabilization of the system, which follows the classic fold-catastrophe model as first described by Rene
Thom (1975). Thus our operational notion of ecological threshold covers sudden changes of state and sudden changes in the dynamical behavior of ecosystems. The overriding theme of interest for natural resource managers is the uncertainty and lack of predictability that surrounds such large-scale system-wide changes.

2.5 Factors That Influence Persistence, Resilience, and Robustness

At a general level, systems can be viewed as consisting of mixtures of positive and negative feedbacks, with positive feedbacks tending to alter the nature of the system, and negative feedbacks tending to minimize these changes (Chapinet al. et al. 1996). Changes that strengthen positive feedbacks (for example, the invasion and spread of highly flammable grass in a desert) can lead to a change in conditions (for example, the fire regime) that may exceed the tolerance of other components of the system. This, in turn, leads to destabilization and threshold changes. Thresholds occur when positive feedbacks amplify changes in system characteristics in ways that exceed the buffering capacity of negative feedbacks that tend to maintain the system in its current state or the current limits of the control variables. Viewed from a management perspective, thresholds occur when changes in the system exceed the adaptive capacity of the system to adjust to change. Because systems are tuned to the natural variability experienced in the past, anything that disrupts that variability can make them vulnerable to further change and amplified instability (Walkeret al. et al. 2006; Folke, 2006).

The following is a partial list of factors that are believed to come into play in determining a system’s persistence, robustness, resilience, and sensitivity to threshold behavior (see also May and McLean, 2007):
1. A higher diversity of very weakly connected and substitutable components are thought to enhance robustness. Such arguments were made in the classic stability complexity debate (see reviews by Pimm 1984 and McCann 2000).

2. Compartamentalization of interactions into guilds is a way to make model ecosystems more robust to systemic events (May et al. 2008). Compartamentalization acts as a fire-break that prevents the spread of a system’s collapse.

3. A predominance of weak linkages in the system with a few strong linkages leads to relatively low connectance (McCann, 2000; May et al. 2008) and is thought to increase resilience. Real ecological systems are thought to have a lognormal distribution of interaction strengths, which has been associated with increased resilience (Sala and Graham, 2002).

4. Ecosystems are robust by virtue of their existence. They are the selected survivors of billions of years of upheaval and perturbation (continental drift, meteor extinctions, and so forth), and show some remarkable constancy in structure that persists for hundreds of millions of years (for example, the constancy of predator/prey ratios). As such, enumerating the common attributes of these diverse naturally selected surviving systems could be of interest to understanding thresholds.

5. Higher measured nonlinearity (greater instability) in the dynamics that provoke an increase in boom and bust population variability (Anderson et al. 2008) is directly associated with regime shifts. This is true in exploited marine fish populations, which show greater swings in abundance than their unexploited
counterparts from the same environment. Exploited species show an amplified response to regime shifts, with greater extremes in abundance.

6. In line with the so-called “paradox of enrichment” (Rosensweig, 1971), fertilizing a system to increase growth rates and carrying capacity can provoke a rapid loss of species to a much simpler state.

7. Increasing time lags involved in population regulatory responses can destabilize systems (May 1977), and this effect becomes more pronounced with higher growth rates. This is analogous to a large furnace (rapid growth) with a poor thermostat (regulatory delay), which tends to produce undershooting and overshooting of temperature in a way that predisposes the system to large-scale failure.

8. Reductions in variance, as might occur when managing systems for a stable flow of one particular good or service, tends to favor those species and components that are typical of this set of conditions at the expense of species that function more effectively under other conditions. Consequently the species as a whole remains stable under a narrower range of conditions.

2.6 The Bottom Line

To manage risks associated with ecological thresholds, it is essential to be able to forecast such events and to plan for and study alternative management scenarios. Better integration of existing monitoring information from the local to the largest possible spatial scales will be required to monitor and identify ecosystems that are approaching and undergoing critical transitions. Field research that focuses on ecosystems undergoing a threshold shift can help clarify the underlying processes at work. And natural resource
managers may very likely have to adjust their goals for the desired states of resources away from historic benchmarks that may no longer be achievable in a nonequilibrium world that is continually changing and now being altered by climate change. Such changes in methods and outlook as the following may be required—

- Abandon classic management strategies that assume a constant world in equilibrium (for example, MSY-models, and mass-balance equilibrium models).
- Acknowledge in our management strategies and in our models that ecosystems are nonlinear, interdependent, and nonequilibrium systems.
- Use near-term forecasting tools, statistical and otherwise, that are appropriate to this class of system (for example, nonlinear time series prediction coupled with scenario models).
- Increase our understanding of the potential mechanisms involved both generically and on a case-by case basis.
- Continue to identify the characteristics of systems that make them more or less vulnerable.
- Continue to identify early warning signals of impending threshold changes (and to monitor for those signals).
- Survey and triage the major biomes to identify which systems might be most vulnerable to current climatic trends.
- Employ adaptive management strategies, such as skillful short-term forecasting methods coupled with scenario exploration models that are
capable of dealing with new successional scenarios and novel combinations of species.
Thresholds of ecological change can occur at many spatiotemporal scales and in a diversity of ecosystems. The following examples were chosen to illustrate that thresholds probably have already been crossed in ecosystems in response to climate change and that the crossing of these thresholds will likely have implications at continental and global scales. Because these changes will likely impact American society significantly, these examples make clear the usefulness of considering thresholds in the monitoring and management of natural resources.

Four case studies are presented below in detail; they cover distinctly different types of ecosystems, all of which are potentially undergoing threshold-type changes. These studies are arranged in order of latitude, beginning with the highest. The first study is of a latitude in the far north where climate change has resulted in large temperature changes. The next study is of the midlatitude PPR where continental drying is expected because the subtropical high-pressure zone is broadening. The third case study is of forests of the West and Southwest, which are at a slightly lower latitude, are generally already water-limited, and will be sensitive to the decreased water availability that would profoundly impact the western half of the United States. Finally, in the lowest latitude example, the effects of climate change in forcing threshold changes in coral reef ecosystems are examined.

Case Study 1. Ecological Thresholds in Alaska

In recent decades, Alaska has warmed at more than twice the rate of the rest of the United States. The Statewide annual average temperature has increased by 3.4°F since the mid-20th century, and the increase is much greater in winter (6.3°F). A substantial
portion of the increase occurred during the shift of the Pacific decadal oscillation in the 1970s. The higher temperatures of recent decades have been associated with changes in the physical environment, such as earlier snowmelt in the spring (Dye, 2002; Stone et al. 2002; Dye and Tucker, 2003; Euskirchen et al. 2006, 2007), a reduction of sea ice coverage (Stroeve et al. 2005), a retreat of many glaciers (Hinzman et al. 2005), and a warming of permafrost (Osterkamp, 2007). In parallel with these changes in the physical environment, substantial changes in ecological systems have been observed, including dramatic increases in the frequency and spatial extent of (stetc) wildfire (Westerling et al. 2006), wildfire, dramatic changes in the wetlands of interior Alaska (Yoshikawa and Hinzman, 2003), vegetation changes in the tundra of northern Alaska (Goetz et al., 2005), and ecological changes that are affecting fisheries in the Bering Sea. The temporal pattern of these responses to climatic change in Alaska, the understanding of the drivers of the responses, the degree to which these responses represent gradual versus threshold responses, and implications for the services provided to society by ecological systems in Alaska are described below.

Ecological Thresholds and Changes in Insect and Wildfire Regimes of Interior Alaska.—Analyses of historical insect and fire disturbance in Alaska indicate that the extent and severity of these disturbances are intimately associated with longer and drier summers (Juday et al. 2005; Balshi et al. 2008). Between 1970 and 2000, the snow-free season increased by approximately 10 days across Alaska primarily because of earlier snowmelt in the spring (Euskirchen et al. 2006, 2007). Longer summers have the potential to be beneficial to the growth of plants. However, the satellite record suggests that the response of plant growth to warming differs in different regions of the
State with growth increasing in the tundra of northern Alaska and decreasing in the boreal forest of interior Alaska (Jia et al. 2003; Goetz et al. 2005). Analysis of forest growth data indicates that the growth of white spruce forests in interior Alaska is declining because of drought stress (Barber et al. 2002), and there is the potential that continued warming could lead to forest dieback in interior Alaska (Juday et al. 2005).

The drought stress that has been experienced by trees in Alaska during recent decades makes them particularly vulnerable to attack by insects. During the 1990s, south-central Alaska experienced the largest outbreak of spruce bark beetles in the world (Juday et al. 2005). This outbreak was associated with a threshold response to milder winters and warmer temperatures that increased the overwinter survival of the spruce bark beetle and allowed the bark beetle to complete its life cycle in 1 year instead of the normal 2 years. This was superimposed on 9 years of drought stress between 1989 and 1997, which resulted in spruce trees that were too distressed to fight off the infestation. The forests of interior Alaska are now threatened by an outbreak of spruce budworms, which generally erupt after hot, dry summers (Fleming and Volney, 1995). The spruce budworm has been a major insect pest in Canadian forests, where it has erupted approximately every 30 years (Kurz and Apps, 1999), but was not able to reproduce in interior Alaska before 1990 (Juday et al. 2005). Areas that experience the death of trees over large areas of forest are vulnerable to wildfire as the dead trees are highly flammable. This is of particular concern in Alaska where wildfire incidence has been increasing in recent decades.

The area burned in the North American boreal region has tripled from the 1960s to the 1990s owing to the increased frequency of large-fire years (Kasischke and...
Turetsky, 2006). For example, two of the three most extensive wildfire seasons in Alaska’s 56-year record occurred in 2004 and 2005, and half of the years with the largest fires during this 50-year time period have been since 1990 (Kasischke et al. 2002, 2006; Kasischke and Turetsky, 2006). The increase in fire frequency in Alaska appears to be primarily associated with the shift in the Pacific decadal oscillation that occurred in the late 1970s as large-fire years occurred once every 6 years before the shift and increased to once every 3 years after the shift (Kasischke et al. 2002). Analyses of fire probability in interior Alaska indicate that fire probability increases as a step function when the mean temperature in June increases above 14°C or when the August mean precipitation decreases below 40 millimeters (mm) (Paul Duffy, oral commun., 05/02/2008). Because the mean June temperature has been increasing in interior Alaska during the last several decades, the crossing of these thresholds will likely lead to substantial increases in area burned in interior Alaska, and there is the potential that the large-fire years of 2004 and 2005 in Alaska may occur several times a decade instead of once or twice every 50 years.

Analyses of the response of fire to scenarios of future climate change indicate that the average area burned per year in Alaska will double by the middle of the 21st century for scenarios of both moderate and high rates of fossil fuel burning (Balshi et al. 2008). By the end of the 21st century, fire is projected to triple in Alaska for a scenario of moderate rates of increase in fossil fuel burning and to quadruple for scenarios of high rates of increase in fossil fuel burning. Such increases have the potential to release large stocks of carbon stored in Alaska soils to the atmosphere, which would be a positive feedback to climate warming (Balshi et al. 2008). The projected increase in the
burned area also increases the fire risk to rural indigenous communities, reduces
subsistence opportunities, and has implications for fire policy (Chapin et al. 2008).

Ecological Thresholds and Changes in Wetlands of Interior Alaska.—There has been a documented decrease in the area of closed-basin lakes (that is, lakes without
stream inputs and outputs) during the latter half of the 20th century in the southern two-thirds of Alaska (Klein et al. 2005; Riordan et al. 2006). The decrease in lake
area appears to be caused by greater evaporation associated with longer and drier
summers and by catastrophic drainage associated with thawing of permafrost in areas
where the temperature of permafrost is close to melting. A decrease in the area of closed-basin lakes has also been documented in Siberia in areas of “warm” permafrost (Smith et al. 2005).

Discontinuous permafrost in Alaska is warming and thawing, and extensive areas
of thermokarst terrain (marked subsidence of the surface resulting from thawing of ice-rich permafrost) are now developing as a result of climatic change. Estimates of the
magnitude of the warming at the discontinuous permafrost surface are 0.5° to 1.5°C
(Osterkamp and Romanovsky, 1999). Thermokarst is developing in the boreal forests of
Alaska where ice-rich discontinuous permafrost is thawing. Thaw subsidence at the
thermokarst sites is typically 1 to 2 meters (m) with some sites experiencing subsidence
of up to 6 m (Osterkamp et al. 1997). Much of the discontinuous permafrost in
Alaska is warm and is highly susceptible to thermal degradation if regional warming
continues. Warming of permafrost may be causing a significant loss of open water across
Alaska as thawing of permafrost connects closed watersheds with groundwater
(Yoshikawa and Hinzman, 2003).
Examination of satellite imagery indicates that the loss of water can occur suddenly, which suggests catastrophic drainage associated with thawing of permafrost (Riordan et al. et al. 2006). However, the reduction of open water bodies may also reflect increased evaporation under a warmer and effectively drier climate as the loss of open water has also been observed in permafrost-free areas (Klein et al. et al. 2005).

In wetland complexes underlain by ice-rich permafrost in areas of hydrologic upwelling (for example, wetland complexes abutting up against the foothills of large mountain ranges), the thawing of that permafrost may result in wetland expansion as trees die when their roots are regularly flooded, causing wet sedge meadows, bogs, and thermokarst ponds and lakes to replace forests (Osterkamp et al. et al. 2000). The Tanana flats, which extends nearly 70 miles from the northern foothills of the Alaska Range to Fairbanks, Alaska, is underlain by ice-rich permafrost that is thawing rapidly and causing birch forests to be converted to minerotrophic floating mat fens (Jorgenson et al. et al. 2001). It is estimated that 84% of a 260,000-hectare (ha) (642,000-acre) area of the Tanana flats was underlain by permafrost a century or more ago. About one-half of this permafrost has partially or totally degraded. These new ecosystems favor aquatic birds and mammals, whereas the previous forest ecosystems favored land-based birds and mammals.

During the past 50 years, it appears that warming has generally resulted in the loss of open water in closed-basin lakes in wetland complexes located in areas of discontinuous permafrost in the southern two-thirds of Alaska (Riordan et al. et al. 2006). The Tanana flats near Fairbanks is the only area where an increase in water area has been documented (Jorgenson et al. et al. 2001), and closed-basin lakes in the tundra region of
northern Alaska have shown no changes in area during the past 50 years (Riordan et al. 2006). The loss of area of closed-basin lakes in interior Alaska may be indicative of a lowering of the water table that has the potential to convert wetland ecosystems in interior Alaska into upland vegetation. A substantial loss of wetlands in Alaska has profound consequences for management of natural resources on national wildlife refuges in Alaska, which cover about 3.1 million hectares (more than 77 million acres) and comprise 81% of the National Wildlife Refuge System. These refuges provide breeding habitat for millions of waterfowl and shorebirds that winter in more southerly regions of North America; reduction of habitat area would present a substantial challenge for waterfowl management across the National Wildlife Refuge System (Julius et al. 2008). Wetland areas have also been traditionally important in the subsistence lifestyles of native peoples in interior Alaska as many villages are located adjacent to wetland complexes that support an abundance of wildlife subsistence resources. Thus, the loss of wetland area has the potential to affect the sustainability of subsistence lifestyles of indigenous peoples in interior Alaska.

Ecological Thresholds and Vegetation Changes in Northern Alaska.—Shrub cover in northern Alaska has increased by about 16% since 1950 (Sturme et al. 2001; Tape et al. 2006), and the treeline is expanding in most places (Lloyd and Fastie, 2003; Lloyd, in press). This is consistent with satellite observations of an approximately 16% increase per decade in the normalized difference vegetation index (NDVI) (Jia et al. 2003; Goetz et al. 2005). The increased growth of vegetation at or above the treeline appears to be a response to longer and warmer growing seasons. Tundra vegetation in northern Alaska may not be experiencing drought stress to the extent experienced by
forests in interior Alaska because the surface water in tundra regions is not able to drain away through the ice-rich continuous permafrost. Experimental studies demonstrate that arctic summer warming of 1°C increases shrub growth within a decade (Arft et al. et al. 1999). Satellite analyses of relationships between NDVI and summer warming (Jia et al. et al. 2003) suggest that the response of tundra vegetation is linearly related to summer warmth. Thus, it appears that the response of tundra vegetation to warming is not a threshold response.

While growth of shrubs and trees may not be threshold responses to warming, the changing snow cover and vegetation in northern Alaska have the potential to result in sudden changes in the absorption of heat from incoming solar radiation and the transfer of that heat to warm the atmosphere. For example, the advance in snowmelt reduces spring albedo, causing the ecosystem to absorb more heat and transfer it to the atmosphere. The snowmelt-induced increase in heating in northern Alaska has been about 3.3 watts per square meter (W m⁻²) averaged over the summer, similar in magnitude to the 4.4 W m⁻² caused by a doubling of atmospheric CO₂ over several decades (Chapinet al. et al. 2005). Thus, gradual warming has caused a rapid advance in the snowmelt date and a very large increase in local heating. Although vegetation changes to date have had minimal effects on atmospheric heating, conversion to shrubland would increase summer heating by 8.9 W m⁻², with even larger changes triggered by conversion to forest.

Warming experiments that increase shrubs also reduce the abundance of lichens, an important winter food of caribou (Cornelissen et al. et al. 2001). Most arctic caribou herds are currently declining in population, although the reasons are uncertain. In summary, positive feedback associated with earlier snowmelt and shrub expansion is amplifying
arctic warming and may be altering food-web dynamics in ways that have important
cultural and nutritional implications for northern indigenous people.

*Ecological Thresholds and Fisheries of the Bering Sea.*—Alaska leads the United
States in the value of its commercial fishing catch, and most of the Nation’s salmon, crab,
and herring come from Alaska, and specifically from the Bering Sea. The Bering Sea is
one of the most productive marine ecosystems in the world, supporting some of the
largest oceanic populations of fish, seabirds, and marine mammals anywhere (Loughlin
et al. 1999). The Bering Sea provides 47% of total U.S. fishery production by mass,
including the largest single species fishery in the United States, walleye pollock
(*Theragra chalcogramma*) (Criddle et al. 1998). It is also an important source of
subsistence resources (fish, marine mammals, and seabirds) for more than 30 Alaska
Native communities and supports 95% of the worldwide population of northern fur seals,
80% of the total number of seabirds that breed in the United States, and major
populations of tens of thousands of Pacific walrus, steller sea lion, and several species of
great whales. This production is fueled by nutrients annually replenished from slope and
oceanic waters across the very broad [more-than-500-kilometer (km)-wide] continental
shelf (Stabeno et al. 2001, 2006).

Changes in fisheries of the Bering Sea occurred in the transition of cool to warm
conditions in 1977, in association with a shift of the North Pacific oscillation, and were
followed by historically high commercial catches of salmon and pollock, as well as a
shift away from crab dominance on the ocean floor. In the past decade, geographic
displacement of marine mammal populations has been documented in the Bering Sea
region. The displacements of walrus and seal populations are already apparent to coastal
communities. The displacements of fauna in the Bering Sea has coincided with a reduction of benthic prey populations, an increase in pelagic fish, an increase in air and ocean temperatures, and a reduction in sea ice (Grebmeier et al. 2006). Ultimately, populations of fish, seabirds, seals, walruses, and other species depend on plankton blooms that are regulated by the extent and location of the ice edge in spring. As the sea ice continues to decline, the location, timing, and species makeup of the blooms is changing, vastly decreasing the amount of food reaching the living things on the ocean floor. This radically changes the species makeup and populations of the fish and other marine life forms, with significant repercussions for fisheries (Grebmeier et al. 2006; Hatfield et al. 2008; Julius et al. 2008). Thus, changes in sea ice are the major driver of concern with respect to threshold changes in fisheries of the Bering Sea.

Seasonal sea ice extent currently divides the Bering Sea eastern shelf into two biogeographic provinces, which differ in production pathways. In the subarctic biogeographic province (south of the average-annual maximum sea ice extent), most primary production remains within the pelagic ecosystem, and pollock is the dominant tertiary consumer (Macklin and Hunt, 2004). In contrast, in the arctic biogeographic province, tight coupling between pelagic primary production and the benthos benefits benthic foragers, such as gray whales, walrus, and diving ducks (Grebmeier et al. 2006). The boundary between the two biogeographic provinces varies in location on longer time scales (decadal or longer) and is expected to move northward as the region becomes warmer. The average southern edge of the maximum ice extent currently lies north of the Pribilof Islands (Byrd et al. 2008).
The Bering Sea ecosystem, however, is in a state of rapid flux owing to climate change. Present data and climate projections from atmosphere-ocean models predict major loss of sea ice during the next few decades (Overland and Stabeno, 2004); the Bering Sea is particularly sensitive to global warming (Grebmeier et al. et al. 2006). Recent relative temperature extremes in Alaska and adjacent waters (more than 2°C) represent the largest recent change on the planet (Hansen et al. et al. 2006). However, these models and data also demonstrate large natural variability. Ecosystems will likely be affected by how the path of such warming occurs, that is, whether there will be a continued slow warming trend with little interannual variability versus a warming trend that incorporates wide swings in temperature and extent of sea ice.

Warming of the Bering Sea is expected to alter the current geographic distributions and behaviors of humans, marine mammals, seabirds, and fish by restructuring their habitats and food webs (Grebmeier et al. 2006). As a result of warming, changes in the time and place of food production lead to dominance of top-down control processes in the pelagic marine environment and the decline of benthic production. Under a long-term warming scenario with early ice retreat, bottom-up control mechanisms (temperature, sea ice extent and duration, ocean currents, and nutrient fluxes) set the stage for the emergence and dominance of top-down control processes in the pelagic marine environment and the decline of benthic production. Increased heat content would increase the combined populations of the subarctic piscivores—arrowtooth flounder, pollock, and cod—in proportion to expanded breeding grounds and increased availability of food during critical developmental stages (Hunt and Stabeno, 2002). Because arrowtooth flounder is not targeted by fishing, it is likely to become the
dominant component of the biomass of the three subarctic piscivores in this study and is predicted to be one of the principal agents of top-down control in the Bering Sea, as predator and competitor of the now-dominant, but commercially exploited, pollock and cod.

Arrowtooth flounder is also an agent of change as a direct and indirect competitor of fur seals, murre, and kittiwakes for their respective forage species (euphausiids, copepods, juvenile pollock, capelin, and myctophids). Populations of fur seals, murre, and kittiwakes could fluctuate in the near term depending on the locality of rookeries and nesting colonies, but long-term overall trends would be downward under warming. Fur seals, murre, and kittiwakes would further decline owing to competition from humpback and fin whales, with fur seal declines being further accelerated by increasing killer whale predation. Dislocation of feeding hot spots would likely disadvantage breeding fur seals, murre, and kittiwakes as central place foragers, but would work to the advantage of humpback and fin whales, further exacerbating direct and indirect competition between these two groups of species. Dislocations and declines in fur seals, kittiwakes, murre, pollock, and cod would stress human communities by increasing the costs of maintaining a livelihood and obtaining food and by necessitating changes in the types of food taken and the means of harvest.

The northern Bering Sea, in particular, is experiencing a rapid shift in the structure and function of the formerly arctic climate regime to conditions typical of marine ecosystems of the subarctic (Grebmeier et al. 2006; Hunt et al. 2002). The earlier sea ice retreat results in a later, warm-water spring phytoplankton bloom, increased grazing by zooplankton, and greater pelagic secondary productivity (Hunt et al. et al.)
Concurrently, benthic productivity is decreasing (Grebmeier et al. 2006). The formerly ice-dominated, shallow marine ecosystem that favored highly productive benthic communities also supported high densities of upper trophic level bottom-feeders, such as Pacific walruses, gray whales, and seaducks, including the Ecological Society of America (ESA)-listed spectacled eider.

The northward flowing Anadyr Current, which originates in the southern Bering Sea, transports nutrient-rich water far onto the Bering Shelf and the northern Bering Sea. This transport creates unusually productive shelf waters in the area north of St. Lawrence Island and south of the Bering Strait, known as the Chirikov Basin (Springer et al. 1989; Piatt and Springer, 2003). Oceanic copepods, such as *Neocalanus cristatus* and *N. flemingeri*, transported by the Anadyr Current, along with the large euphausiid *Thysanoessa raschii* provide abundant prey for planktivores foraging near St. Lawrence Island (Piatt et al. 1988). The Anadyr Current is highly variable on a seasonal and annual basis, reaching its greatest velocity during July [about 1.3 Sv (13 million cubic meters per second)] (Roach et al. 1995). Consequently, the primary productivity on the Bering Shelf during summer months varies with the strength of northward flow associated with the Anadyr Current (Springer et al. 1989; Russell et al. 1999).

When the Anadyr Current is weaker, planktivores presumably rely more on zooplankton associated with northern Bering Shelf waters, such as the small copepod *Calanus marshallae* and the large amphipod *Themisto libellula* (Coyle, Chavtur, and Pinchuk, 1996; Russell et al. 1999). *Neocalanus* copepods are larger and have higher energy content per prey item than the small, neritic copepod *C. marshallae* which is characteristic of Bering Shelf water. The lipid content of *Neocalanus* copepods is also
probably higher (Obstet et al. 1995), making these oceanic species more energy-dense than their shelf domain counterparts. When preferred *Neocalanus* copepods are not available, planktivores must switch to other prey types. The progressively earlier transition from winter to spring in the Bering Sea and the resulting changes in primary and secondary productivity are expected to have large impacts on upper trophic-level consumers (Stabeno and Overland 2001; Grebmeier et al. 2006).

Projected warming of the Bering Sea is also expected to profoundly alter the structure of the southeastern Bering Sea ecosystem by changing pathways and fluxes of energy flow, as well as the abundance, spatial distribution, and species composition of fish, seabirds, and marine mammals, thereby affecting commercial and subsistence fisheries that support local, regional, and national economies Grebmeier et al. 2006; Hunt and Stabeno 2002). Climate-induced changes in physical forcing of the Bering Sea modifies the partitioning of food resources at all trophic levels on the continental shelf through bottom-up processes.

Case Study 2. The Mid-Continent Prairie Pothole Region: Threshold Responses to Climate Change

The Prairie Pothole Region (PPR) of north-central North America is one of the most ecologically valuable freshwater resources of the Nation (van der Valk, 1989). It contains 5 million to 8 million wetlands, which supply critical habitat for continental waterfowl populations and provide numerous valuable ecosystem services for the region and nation. The weather extremes associated with this region are particularly important for the long-term productivity of waterfowl dependent on these wetlands.
The PPR (fig. 3.1) exhibits a variable climate, ranging from severe droughts exemplified by the 1930s when agriculture was devastated, grassland communities shifted eastward, and trees died by the millions (Albertson and Weaver, 1942, 1945; Woodhouse and Overpeck, 1998; Rosenzweig and Hillel, 1993) to periods of deluge, such as occurred in the late 1900s when closed-basin lakes flooded, causing high mortality of shoreline trees and considerable economic damage to farmland, roads, and towns (Winter and Rosenberry, 1998; Johnson et al., 2005; Shapley et al., 2005).

The 20th-century climate of the PPR was punctuated by significant droughts. These conditions have occurred over small and large areas and lasted as short as several growing seasons to as long as a decade (Skaggs, 1975; Laird and Cumming, 1998; Nkemdirim and Weber, 1999).
Wetlands in the PPR are likely to be strongly affected by gradual changes in climate (Poiani and Johnson, 1991; Covitch et al. 1997). Climate drives surface processes, such as the hydrologic cycle, and hydrology is the most important factor that controls key wetland processes and services (Winter and Woo, 1990). A warmer and drier climate, as indicated by general circulation models (GCM) for the northern Great Plains (Ojima and Lackett, 2002), could affect the wetland hydroperiod, the ratio of emergent plant cover to open water, the species composition, wetland permanence, and primary and secondary productivity, among others (van der Valk, 1989). Winter (2000) predicted that the surface area of seasonal and semipermanent wetlands in the PPR would be reduced by increases in evapotranspiration and reduced summer soil moisture. With increased temperatures, summer evapotranspiration would put increasing demands on groundwater, resulting in earlier drying of wetlands. Thus, additional climate variability of the magnitude suggested by global climate change models would profoundly affect wetland water budgets and the many processes and attributes linked to these wetlands.

Changing climate can have direct effects on the trajectories of these wetland ecosystems and their sustainability. Shifts in climate in this region over decadal time scales could result in longer or more frequent drought periods and may lead to threshold responses by the wetland systems. The interaction of extrinsic and intrinsic processes reflected in such hydrologically, geologically and biologically linked systems as wetlands and their surrounding watersheds could result in rapid nonlinear changes at broad spatial scales.
scales that are triggered by small differences in temperature and precipitation if threshold
values are exceeded that may also result in these systems exhibiting hysteresis.

The first quantitative assessments of the possible effects of climate change on
PPR wetlands used the WETSIM (WETland SIMulator), which is a rule-based, spatially
explicit simulation model that is composed of hydrology and vegetation submodels
(Poiani and Johnson, 1991, 1993a, b; Poianiet al.et al.1995, 1996). Simulations using this
model and GCM climate forcings indicate that semipermanent wetlands would lose their
historic highly dynamic character by drying up more frequently and becoming
chronically choked with emergent cover. Shortened hydroperiods and monotonous stands
of emergent cover for semipermanent wetlands across the PPR would have strong
negative effects on the continental population of waterbirds (particularly ducks).

Johnson et al. (2005) used a simulation model (WETSIM) to contrast
historical and future wetland conditions across the PPR of North America (fig. 1). They
assembled 95-year climate data sets for 18 weather stations across the PPR as input to a
revised version of WETSIM (version 3.1), which enabled a much broader geographic
assessment to be conducted of the effects of past and future climate variability on wetland
conditions across the PPR. Their model runs reflected the high level of spatial and
temporal heterogeneity in wetland water levels historically across the PPR. They were
able to use model output to simulate the number of completions of the wetland cover
cycle across the PPR (fig. 3.2; Weller, 1965).
Figure 3.2. Wetland cover cycle (modified from Weller, 1965).

The wetland cover cycle was highly sensitive to alternative future climates. The geographic pattern of return times shifted markedly with changes in temperature and precipitation. A 3°C increase in temperature and no change in precipitation resulted in a greatly diminished area and geographic shift eastward for the region of fastest return times. However, reduced precipitation and warmer air temperatures resulted in no complete cover cycle return times across the PPR except in a small area of north-central Iowa (fig. 3.3), thus representing a threshold response to climate change. Such dramatic
shifts in wetland conditions emphasize the sensitivity of PPR wetlands to climate variability. Using this information, Johnson et al. (2005) simulated the occurrence of highly favorable water and cover conditions for breeding waterfowl (fig. 3.4). The most productive habitat for breeding water birds would shift under an effectively drier climate from the center of the PPR (the Dakotas and southeastern Saskatchewan) to the wetter eastern and northern fringes (in sync with the changes in the cover cycle return results).

**Figure 3.3.** Geographic patterns of the speed of the wetland cover cycle, simulated for the Prairie Pothole Region (PPR) under historic (a) and alternative future (b, c, and d) climatic conditions. (Johnson et al. 2005)
Figure 3.4. Simulated occurrence of highly favorable water and cover conditions for waterfowl breeding (occurrence of at least one return time and hemimarsh conditions at more than 30% frequency) across the Prairie Pothole Region (PPR) under historic (a) and alternative (b, c, and d) future climatic conditions. (Johnson et al. et al. 2005)

Case Study 3. Broad-Scale Forest Die-Back as a Threshold Response to Climate Change in the Southwestern United States

The ecological dynamics of semiarid forests and woodlands in the southwestern United States are observed to respond strongly to climate-driven variation in water-availability, with major pulses of woody plant establishment and mortality commonly corresponding to wet and dry periods (Swetnam and Betancourt, 1998). In particular, climate-induced water stress can trigger rapid, extensive, and dramatic forest dieback (Breshears et al. et al. 2005), exemplifying significant ecosystem threshold responses to
climate. Broad-scale tree mortality can shift ecotones between vegetation types (Allen and Breshears 1998) and alter regional distributions of overstory and understory vegetation (Gitlin et al. 2006; Richet et al. 2008). Rapid forest dieback also has nonlinear feedbacks at multiple spatial scales with other ecological disturbance processes, such as fire and erosion (Allen, 2007), which, in some cases, leads to additional nonlinear threshold behaviors. Massive forest mortality is an example of a threshold phenomenon with substantial implications for future ecosystem dynamics and management of lands undergoing such changes (Millare et al. 2007).

Assessments of potential global change impacts initially focused on how vegetation types matched given climatic envelopes (IPCC, 1996). Subsequent research has considered how vegetation patterns might migrate in response to changing climate with a focus on rates of plant establishment, has documented that forest turnover rates follow global and regional patterns of productivity (significantly driven by climate) (Stephenson and van Mantgem, 2005), and has increasingly moved toward dynamic global vegetation models that try to incorporate more realistic disturbance dynamics (Scholze et al. 2006; Purves and Pacala, 2008). Currently, climate-induced dieback of woody plants is being recognized as an important vegetation response to climate variation and change, with examples of forest dieback emerging from around the world (Allen and Breshears, 2007). Recent research shows that water stress appears to be driving increases in background tree mortality rates in western North American forests (van Mantgem and Stephenson, 2007; van Mantgem et al. in review). In addition, observations of extensive tree die-off—especially from semiarid ecosystems where woody plants are near their physiological limits of water stress tolerance—are being
documented globally, for example, in Australia (Fensham and Holman, 1999), Africa (Gonzalez, 2001), west Asia (Fisher, 1997), Europe (Doberti et al. 2007), South America (Suareze et al. 2004), and North America (Breshears et al. 2005).

Climate-induced water stress during extended time periods can exceed the physiological tolerance thresholds of individual plants and directly cause mortality through either: 1) cavitation of water columns in the xylem conduits (“hydraulic failure”); or 2) forcing plants to shut down photosynthesis to conserve water, leading to “carbon starvation” (McDowell et al. 2008; Breshears et al. in press). These individual-scale threshold responses to climate stress can trigger tree mortality that propagates to landscape and even regional spatial scales (Allen, 2007), sometimes amplified by biotic agents (like bark beetles) that can successfully attack and reproduce in weakened tree populations and generate massive insect population outbreaks with positive feedbacks that greatly increase broad-scale forest mortality (Kurz et al. 2008).

Ecotones are areas where vegetation changes in response to climate are expected to be most rapid and prominent (Beckage et al. 2008), as highlighted by a southwestern case study of drought effects on vegetation during the 1950s (fig. 3.5; Allen and Breshears, 1998). Severe drought across the southwestern United States during the 1950s caused ponderosa pine (Pinus ponderosa) trees at lower, drier sites to die, resulting in an upslope shift of the ponderosa pine forest and piñon-juniper woodland ecotone of as much as 2 km in less than 5 years, producing a rapid and persistent change in dominant vegetation cover. Similarly, within the distributional range for the piñon pine (Pinus edulis), many trees at lower or drier sites also died (Swetnam and Betancourt, 1998).
Figure 3.5. Changes in vegetation cover between 1954 and 1963 at Frijolito Mesa, Jemez Mountains, New Mexico, showing the persistent ponderosa pine forest (365 ha), the persistent piñon-juniper woodland (1527 ha), and the ecotone shift zone (486 ha) where forest changed to woodland (from Allen and Breshears, 1998).

Although tree mortality almost certainly occurred across much of the southwestern United States in response to the 1950s drought (and probably for previous regional-scale droughts as well), few studies exist that allow scientists to test projections about the rapidity and extent of potential vegetation die-off response to drought. A recent drought beginning in the late 1990s and peaking in the early 2000s affected most of the western United States; this was the most severe drought in the Southwest since the 1950s. Substantial mortality of multiple tree species has been observed throughout the Southwest during this 2000s drought (fig. 3.6; Gitlin et al. 1996; U.S. Forest Service, 2006; Allen, 2007). For example, mortality of the piñon pine spanned major portions of the species’ range, with substantial die-off occurring across at least 1,000,000 ha from
2002 to 2004 (Breshearset al. et al. 2005; U.S. Forest Service, 2006). For both droughts, much of the forest mortality was associated with bark beetle infestations, but the underlying cause of dieback appears to be water stress associated with the drought conditions.

Figure 3.6. Graph of the acreage of piñon pine (*Pinus edulis*) and ponderosa pine (*Pinus ponderosa*) dieback from 1997-2004 in the Four Corners states of Arizona, New Mexico, Colorado, and Utah; map showing cumulative area from 2000 to 2004. Based upon annual aerial forest insect and disease activity inventories by the U.S. Forest Service.

The precipitation deficit that triggered the recent regional-scale die-off of the piñon pine across the Southwest was not as severe (dry) as the previous regional drought of the 1950s, but the recent 2000s drought was hotter than the 1950s drought by several metrics, including mean, maximum, minimum, and summer (June-July) mean temperature (Breshearset al. et al. 2005). Although historic data from the 1950s is
limited, available data suggest that piñon pine mortality in response to the recent drought has been more extensive, affected greater proportions of more age classes, and occurred at higher elevation and wetter sites than in the previous 1950s drought. Hence, the warmer temperatures associated with the 2000s drought may have driven greater plant water stress through increased evapotranspirational demand, and resulted in more-extensive tree die-off. Because global change is projected to result in droughts under warmer conditions—referred to as global-change type drought, the severe piñon pine dieback from the recent drought may be a harbinger of vegetation response to future global-change type droughts (Breshears et al. 2005).

In addition to the die-off of dominant overstory tree species, high levels of dieback also were observed in other southwestern U.S. species and lifeforms in response to the warm regional drought in the 2000s (Gitlin et al. 2006; Allen, 2007). These include species where bark beetles are unimportant or nonexistent, including one-seed juniper (Juniperus monosperma)—a co-dominant with piñon pine for much of its range; shrubs such as wavy-leaf oak (Quercus undulate) and mountain mahogany (Cercocarpus montanus); and blue grama (Bouteloua gracilis), the dominant herbaceous species in many of these woodland systems.

In addition to direct climate-induced mortality, severe protracted drought also can cause substantial reductions in the productivity and soil surface cover of herbaceous plants, which in turn affects numerous other ecological processes. In particular, reductions in herbaceous ground cover can trigger a nonlinear increase in soil erosion once a threshold of decreased herbaceous cover has been crossed, through increased connectivity of bare soil patches (fig. 3.7; Davenport et al. 1998; Wilcox et al. et al.)
2003; Ludwig et al. 2005; Mayore et al. in press). On the other hand, dieback of woody canopies tends to cause an immediate successional shift toward greater cover of understory vegetation if moisture conditions are adequate (for example, Richet et al. 2008), which propagates a different set of effects.

Figure 3.7. Diagram representing interactions across spatial scales for three different disturbance processes (forest dieback, fire, and erosion) in northern New Mexico landscapes (from Allen 2007). Dashed black arrows represent pattern-process feedbacks within three different spatial-scale domains, with one example of pattern and process shown for each domain for each disturbance. Solid black arrows indicate the overarching direct effects of widespread environmental drivers or disturbances (such as climate and overgrazing) on patterns and processes at all scales. Blue arrows indicate the point at which altered feedbacks at finer spatial scales induce changes in feedbacks at broader scales (for example, fine-scale changes cascade to broader scales), and also where changes at broader scales overwhelm pattern-process relationships at finer scales. Red dashed arrows illustrate some examples of amplifying (positive feedback) interactions between disturbance processes within and between spatial scales; green dashed arrows illustrate dampening (negative feedback) interactions between disturbance processes. Abbreviations: L = landscape; IC = intercanopy (interspaces between tree canopies).
Overall, the dieback of overstory vegetation affects numerous key ecosystem processes, which are tied to site-specific distributions of incoming energy and water (Zoue et al. 2007), and has multiple cascading ecological effects. Widespread tree mortality may propagate additional pervasive changes in various ecosystem patterns and processes. Breshears (2007) summarizes the important ecological role of woody plant mosaics in semiarid ecosystems:

*A large portion of the terrestrial biosphere can be viewed as lying within a continuum of increasing coverage by woody plants (shrubs and trees), ranging from grasslands with no woody plants to forests with nearly complete closure and coverage by woody plants* (Breshears & Barnes, 1999; Breshears, 2006). The characteristics of woody plants determine fundamental descriptors of vegetation types including grassland, shrubland, savanna, woodland, and forest. Because woody plants fundamentally affect many key aspects of energy, water and biogeochemical patterns and processes, changes in woody plant cover are of particular concern (Breshears, 2006).

Climate-driven, rapid forest dieback has feedbacks with other ecological disturbance processes, such as fire and erosion, in some cases leading to further nonlinear ecosystem threshold behaviors (fig. 3.7). Warming and drying climate conditions are driving higher-severity fire activity at broader scales in the southwestern United States directly (Swetnam & Betancourt, 1998; Westerling et al. 2006), and probably also indirectly where forest dieback changes fuel conditions (fig. 3.7: Bigler et al. 2005). High-severity stand-replacing fires within woodlands and forests can almost instantly cause large reductions in tree canopies and soil surface covers, thereby also triggering
dramatically increased rates of runoff and soil erosion for several years post-fire until
vegetation regrowth restores adequate land surface cover (Veenhuis, 2002; Moody and
Martin, in press). Forest dieback, fire, and erosion also have significant effects on
ecosystem carbon pools (Breshears and Allen, 2002; Kurzet al.et al. 2008). The
combined interactive effects of climate-driven ecological disturbance processes
(vegetation dieback, fire, and erosion) are highlighted by the major changes in woodland
and forest ecosystems that have occurred in northern New Mexico during the past 60
years (fig. 3.8; Allen, 2007). Climate-induced forest dieback, fire, and accelerated
erosion already may be causing permanent “type conversion” changes to some
southwestern ecosystems. Even without factoring in ongoing/predicted climate changes,
it will be at least several decades to centuries before reestablishment of pre-disturbance
tree canopy covers will occur on many semiarid woodland and forest sites in this region
(Allen and Breshears, 1998; Savage and Mast, 2005).
Figure 3.8 Increased herbaceous cover has developed since recent piñon pine forest dieback in the Jemez Mountains of New Mexico and may promote surface fire regimes and changes in runoff and erosion patterns. July 2004.

Examples of drought-induced tree die-off in semiarid forests and woodlands highlight the rapidity and extensiveness with which climate stress can trigger pervasive and persistent ecosystem changes. Climate change has the potential to drive multiple nonlinear or threshold-like processes that can interact in complex ways, including tree mortality, altered fire regimes, energy and water budget changes, and soil erosion thresholds (Allen, 2007), making ecological predictions difficult (McKenzie and Allen, 2007). For example, the projections of state-of-the-art dynamic global vegetation models “are currently highly uncertain, making vegetation dynamics one of the largest sources of uncertainty in Earth system models” (Purves and Pacala, 2008). Additional research,
including research on threshold responses, is needed to improve projections of the nonlinear ecological effects of expected climate changes, such as broad-scale forest dieback, associated ecosystem dynamics, and effects on carbon budgets and other ecosystem goods and services (Breshears and Allen, 2002; Millennium Ecosystem Assessment, 2005; Millaret al. et al. 2007).

Case Study 4. Thresholds in Climate Change for Coral-Reef Ecosystem Functioning

Corals are perpetually subjected to environmental changes in time and space. As adult colonies, corals are sessile and so are subjected to changes in the environmental factors through time in one location. As larvae, corals are motile, and each must select a location from a complex and variable array of available sites. Corals are resilient to changes in both space and time through acclimatization, adaptation, local environmental ameliorations, initial community composition, and the morphological characteristics of the reef. It is reasonable to assume that most corals will not go extinct with global climate change because of their abilities to acclimatize, to adapt, and to broadcast their larvae geographically. The threshold or tipping point for coral-reef ecosystems is the point along the environmental gradient at which the ecological or biological processes change from negative feedback for net accretion to positive feedback or reef erosion. Systems consist of mixtures of positive and negative feedbacks, with positive feedbacks tending to alter the nature of the system, and negative feedbacks tending to minimize these changes (Chapinet al. et al. 1996). Once the feedback process starts and net accretion decreases to a point of erosion of the reef, there is no return to the functioning coral-reef ecosystem.
The following natural and anthropogenic stressors and coral reef responses to them may include (Birkeland 2004):

- Inverse density dependence (or Allee effect) - Algal abundance at levels beyond the capacity of herbivores to keep in balance;
- Predators of corals at a rate higher than the rate of recovery and coral population replenishment;
- Bioerosion of corals;
- The prevalence of crustose coralline algae, which weakens binding of the substratum, is decreased and thereby decreases successful coral recruitment; and
- Invasives—establishment of introduced species, which modify the habitat in ways that favor the survival and dominance of the introduced species is displacing natural species.

Such local processes as these stressors and the feedback mechanisms of corals to these stressors have determined the substantial degradation of coral reefs over the past 3 decades in the tropical western Atlantic Ocean (Gardner et al. 2003) and in the Indo-Pacific Ocean (Bruno and Selig, 2007). It is likely that the crossing of thresholds in coral ecosystems began nearly 3 decades ago with no evidence the rate of degradation is decreasing.

Although anthropogenic modification of local ecological processes has been the dominant force in coral-reef degradation (Birkeland, 2004) and tipping points have been crossed decades ago in many areas (Gardner et al. 2003; Bruno and Selig, 2007), global changes in climate and oceanic characteristics are now becoming more apparent.
Global processes that are affecting coral reefs, which are related to the increased concentration of atmospheric CO₂, are sea level rise, the decline in pH of seawater, and the increase in seawater temperature.

*Rise and Fall of Sea Level.*—Coral reef ecosystems have experienced rise and fall of sea levels several times in geological history with associated effects on reef functioning (defined as constructing reefs upwardly). Reef accretion has stopped for periods of time in excess of 10 million years, the threshold for the cessation of reef upward growth being the time of decreasing sea level. It is hard to determine the effect of climate change alone on whether corals will keep pace with sea level rise, increasing water temperatures, and change in ocean pH. Whether coral reefs keep up with sea level rise depends on a multitude of local environmental factors and the degree to which these factors stress the corals themselves. The rate of sea level rise alone does not provide a predictable tipping point for reef deposition that can be generalized over a region (Hallock et al. 1993, Garrison et al. 2003).

*Decrease in Seawater pH.*—The concentration of CO₂ in the atmosphere is generally expected to reach two times the preindustrial (late 18th century) levels by 2065 (Houghton et al. 1996). As CO₂ concentration increases in the atmosphere, the surface seawaters take up more CO₂. The increased uptake of atmospheric CO₂ by the surface waters of the ocean leads to a decrease in pH of surface waters, an increase in the proportion of bicarbonate ions (\(HCO_3^-\)), and a decrease in the proportion of carbonate ions (\(CO_3^{2-}\)) (Feely et al. 2008). The overall effect is on the rate of precipitation of coral skeleton.

\[
CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+ \rightleftharpoons CO_3^{2-} + 2H^+
\]
The oceans have already taken up an additional one-third to one-half of industrial-age emissions of CO2, and the concentrations of carbonate ions in the oceans have decreased from 11% (preindustrial), to 9% (now) and are projected to decrease to 7% when carbonate concentrations are double the preindustrial concentrations, perhaps in 3 to 5 decades (ISRS, 2007).

Kleypas and others (1999) determined that doubled atmospheric CO2 will lead to a 14% to 30% decrease in reef calcification rates. This was estimated to be a general tipping point from net carbonate accretion to net carbonate loss by Kleypas and others (2001). Net reef accretion is potentially reduced to zero when increased CO2 in the atmosphere reaches about 500 to 600 ppm. On the other hand, CO2 is less soluble in seawater at higher temperatures. While increased concentrations of atmospheric CO2 may be accelerating the uptake of CO2 by surface seawater, global warming may be slightly damping the uptake. But of more substantial influence in accelerating the tipping point of net reef accretion are the synergistic biological effects on corals of reduced growth in the face of natural and anthropogenic stressors.

Sabine and others (2004) showed that uptake of anthropogenic CO2 by subtropical Atlantic waters has been greater than by Pacific waters. The north Atlantic stores 23% of the total anthropogenic (fossil-fuel and cement-manufacturing emissions) CO2 taken up by the world oceans, even though the north Atlantic occupies only 15% of the world’s total ocean area. Pacific waters are less receptive to the uptake of CO2 and therefore are buffered from a decrease in pH because of higher concentrations of dissolved inorganic carbon. As seawater becomes warmer coral reef net accretion will probably become
slightly more restricted in latitude (Kleypas et al. 1999, 2001) because of the changes in chemistry from CO₂ uptake in the world’s oceans.

Seawater Warming.—The thresholds in tolerance of corals to an increase in water temperature and its duration before “bleaching” (expelling the symbiotic zooxanthellae) is predicted by the degree heating week (DHW) record, 12-week accumulations measured as °C weeks. The DHW product is an accumulation of hotspot values over the bleaching threshold [1°C over the maximum monthly mean (MMM)]. The threshold values of DHW vary from site to site because the MMM varies from site to site; thus, corals are likely adapted to their own threshold temperatures at each site. Furthermore, the past history of events in the physical environment and local characteristics of the physical environment can modify the actual location of the threshold or tipping point (Smith and Birkeland 2007). Based on our knowledge of tolerances and the gaps in the literature on thresholds identified in developing this SAP, corals are likely to reach a threshold with an increase in sea water temperatures.

Mechanisms of Reef Resilience That Alter Thresholds.—The resilience of corals to environmental changes is largely determined by their capacity to acclimatize (adjust physiologically and behaviorally). The thresholds of resilience of corals to environmental factors, such as water temperature and ultraviolet (UV) radiation, are altered by changes in symbiotic interactions. Reef-building corals are dependent on symbiotic dinoflagellate algae (zooxanthellae) in their endodermal cells for their nutrition and proficiency in deposition of skeleton. There are a number of clades or types of zooxanthellae, and the physiological and ecological attributes of zooxanthellae vary among clades. The symbiotic relationship breaks down under stressful conditions of extra warm seawater or
strong UV radiation. Under these conditions, corals sometimes expel much of the
zooxanthellae of clade C and allow the buildup of clade D, with which the coral growth
rate is slower but survival under stressful conditions may be greater. As with
morphological adjustments, the symbiotic adjustments of corals may be determined by a
balance between the stresses imposed by the physical environment and by ecological
interactions with other species (Bruno and Selig 2007). In addition to adjustments in
morphology and symbiotic relationships, acclimatization can occur through biochemical
conditioning. Increased water temperature triggers a substantial increase in biochemical
activity in corals. Intense biochemical activities resulting from changes in water
temperature may indicate a processes of acclimatization that might increase the distance
to the threshold for mortality of the coral from seawater temperature (Smith and
Birkeland 2007).

Whether changes in morphology, symbiotic relationships, physiological
conditioning, or production of biochemicals are the mechanisms to shift the threshold for
survival from climate change, acclimatization costs the coral in terms of energy and
materials that would otherwise be available for growth and successful competition.

Acclimatization can be approached by robustness or plasticity. The mound-shaped
species of *Porites* (such as *P. lobata*) are robust and live in a wide range of habitats. They
are the last to drop out of the coral community near a river mouth or in bays with
increasing turbidity. Species of *Acropora* dominated the reef front at the municipal sewer
outfall for Koror, Palau, until predation on corals by the crown-of-thorns starfish and
bleaching by the large-scale seawater warming of 1997–98 killed the *Acropora* spp. but
not the *Porites* spp. (Richmond et al. 2002). *Porites* can maintain itself rather constantly
despite fluctuations in the external physical environment, but at a metabolic cost (fig. 3.9).

The relatively rapidly growing *Pocillopora eydouxi* display plasticity and can differ substantially among habitats in rates of growth, colony morphology, and types of zooxanthellae hosted. *Pocillopora* are generally more vulnerable to the physical environment and so their growth rates vary among habitats and they are more likely to bleach [expel zooxanthellae and/or photosynthetic pigments] with higher than usual water temperatures and with more intense UV radiation.

**Figure 3.9.** Branching corals overgrowing mound-shaped corals.

*Factors that Shift the Thresholds.*—Corals are most vulnerable to infrequent or very frequent environmental changes. As explained in the previous section, corals can acclimatize (physiological or behavioral response) or adapt (genetic response) to environmental changes of intermediate frequency. If the phenomena, such as
extraordinarily warm seawater, are infrequent enough to be unpredictable, then the corals will not be able to acclimatize or adapt. However, if the events are too frequent, the corals will not have time to recover between events.

The factor of duration relates to the different effects of acute and chronic disturbances on the resilience of coral communities. The threshold seawater temperature associated with global climate change is determined in part by the duration of the warm water event. In 1997–98, an increased average surface seawater temperature of 1.0° to 1.5°C (to about 30° or 31°C) over a period of several weeks caused extensive mortality of corals in the Indian Ocean, the southwestern Pacific Ocean, and the western Atlantic Ocean (Bruno and Selig 2007). In contrast, daily fluctuations of 6°C to 6.5°C (to about 34° or 35.5°C) in reef flat pools in American Samoa are endured in good health by about 80 species of corals.

The threshold seawater temperature that severely affects a coral will be higher in areas of constant or even intermittent high water motion and the threshold of temperature tolerance will be lower in areas of low water motion (Smith and Birkeland, 2007). Thresholds in levels of tolerable input of nutrients or sediment will be low in backwaters and relatively much higher in areas of strong current. In contrast, it will take substantially longer for the ecosystem to solidify rubble into a stable substratum for reef recovery in areas of strong water motion than in areas of low water motion. The threshold of tolerance of corals to infection by disease is sometimes lowered by stress from other environmental factors and by abrasion of surface tissue by predators or other objects (Garrison et al. 2003). The physical and biological environments are a complex system of
factors that potentially act synergistically to shift the threshold of the specific factor
associated with climate change.

Levels of Thresholds.—Thresholds should be considered at two levels: the first at
which the population is killed or the ecosystem becomes dysfunctional, and the second at
which the population or the ecosystem is prevented from becoming reestablished. An
acute disturbance to a coral reef is a distinct event. A chronic disturbance is an ongoing
process. The coral-reef communities of American Samoa have been severely affected by
large-scale acute disturbances, such as outbreaks of the coral-eating crown-of-thorns
a 15-year interval between disturbances, the coral communities have recovered
(Birkeland et al. 2008). This is in contrast to the western Atlantic where there has
been a continual degradation of coral reef systems for a half a century (Gardner et al.
2003). The relatively small area of the tropical western Atlantic allows widespread events
on continents to affect the whole region (Hallock et al. 1993; Garrison et al. 2003). The nutrients (Hallock et al. 1993), pollutants (Garrison et al. 2003), and
diseases (Lessios et al. 1984) can disperse across the entire region. A recent paper by
Bruno and Selig (2007) reported that 3,168 square kilometers of reef has been dying each
year rather uniformly throughout the Indo-Pacific Ocean. Reefs are appearing to be
losing their resilience globally.
American Samoan reefs have managed to maintain resilience by receiving
disturbances only as acute events and being largely isolated from nearby large
landmasses. Overfishing, however, has been chronic, and the fish communities have not
been as resilient as the corals (Zeller et al. 2006a, b). Some localized and well-defined areas experience chronic stresses, such as sedimentation at the mouths of rivers or in the backs of bays, and have not been recovering for decades.
Chapter 4—Examples of Threshold Change in Ecosystems

4.1 Background

The existence of ecological thresholds has long been apparent to people who depend on natural resources. Fisheries collapses, for instance, have been noted for centuries. However, ongoing climate change has given this issue greater urgency because more ecosystems may be getting pushed toward response thresholds simultaneously, and based on gaps in the literature identified through the development process for this SAP, little is known regarding where the tipping points are. Summarized below are examples of where ecological thresholds have been crossed; they represent different geographic areas, ecosystem types, and drivers of change. These reflect the new stressor of climate change and how it leads to new ecosystem responses. For example, the temperature increases documented for many areas can likely cause an ecosystem changeover when normal droughts are experienced because the additional evapotranspirative demand of higher temperatures exceeds the adaptive capacity of trees, leading to the massive forest dieback described in Case Study 3.

4.2 Evidence of Thresholds from the Past

Thresholds appear to have been crossed in the past, leading to ecosystem changes that persist today. A recent example of threshold behavior is the encroachment of woody plants into perennial grasslands that has occurred throughout arid and semiarid regions of the world for at least the past several centuries. This broad-scale land cover conversion and associated soil degradation (*i.e.*, desertification) has local to global consequences for ecosystem services, such as reduced air and water quality (Schlesinger et al. 1990;
Cross-scale linkages among local soil and grass degradation, landscape connectivity of erosion processes, and land cover-weather feedbacks have been invoked to explain threshold behavior in space and time that occur during desertification (Peters et al. 2006). Four stages and three thresholds have been identified as the spatial extent of desertified land increases through time (Peters et al. 2004). Following introduction of woody plant seeds into a grass-dominated system (Stage 1), local spread often occurs as a result of feedback mechanisms between plants and soil properties interacting with wind and water erosion to produce fertile plant islands surrounded by bare areas that move the system across a threshold into Stage 2 (Schlesinger et al. 1990). This rate of spread may be slower than other stages as a result of interactions between plant life history characteristics that occur infrequently, such as recruitment, and the low precipitation and high temperatures that characterize dry regions. As the size and density of woody plants increase through time, contagious processes among patches, primarily wind and water erosion that connect bare soil patches, become the dominant factors governing the rate of desertification. As a result, a nonlinear increase in woody plant cover occurs and a second threshold is crossed as the system enters Stage 3. Through time, sufficient land area can be converted from grassland (low bare area, low albedo) to woodland (high bare area, high albedo) so that regional atmospheric conditions, in particular wind speed, temperature, and precipitation, are affected. At this point, a third threshold is crossed where land-atmosphere interactions with feedbacks to vegetation control system dynamics (Stage 4) (Pielke et al. 1997). Feedbacks to broad-scale
vegetation patterns have been documented in the Sahara region of Africa (Claussenet al. et al. 1999).

4.3 Evidence of Sensitivity to Current Stressors

4.3.1 Temperature Increase

The effects of increasing temperatures as an effect of climate change are not independent of the effects of other important environmental stressors, and thus need to be assessed in the context of multiple, interacting stressors. AR4 WG II (2007) reports with very high confidence that the increased warming effect of climate change is strongly affecting natural biological systems in both marine and fresh water systems. The chemical and physical characteristics of lakes experience major effects owing to changes in temperature, especially changes in nutrient dynamics. Increased temperatures in lake systems will affect the distributions, growth, and survival of fish and many other aquatic organisms. Tied with increased temperatures is a change in precipitation, which can cause substantial physical and chemical changes in lakes and streams, with large consequences for aquatic biota. In marine systems, increased temperature from climate change is affecting coastal resources and habitats because of sea level rise that is caused by thermal expansion of the oceans and the melting of ice cover. The rate of sea level rise is expected to accelerate because of global warming. Salt marshes must increase their vertical elevation at rates that keep pace with sea level rise or risk transformation to a lower position along the marsh gradient. In transgressing systems, where there is a landward movement of the marsh system, structure and composition of marsh communities is expected to change when the rate of sea level rise exceeds the rate of vertical accretion. Transition from one type of marsh to another (for example, high
marsh to low marsh) at a given point has been described as ecosystem state change
(Miller et al. 2001).

The effects of temperature increases on terrestrial systems are further emphasized
in the IPCC Assessment Report for Working Group II (2007)(AR4WGII) report with
very high confidence where it is stated that the overwhelming majority of studies of
regional climate effects on terrestrial species reveal consistent responses to warming
trends, including poleward and elevational range shifts of flora and fauna. Responses of
terrestrial species to warming across the Northern Hemisphere are well documented by
changes in the timing of growth stages (that is, phenological changes), especially the
earlier onset of spring events, migration, and lengthening of the growing season. Changes
in abundance of certain species, including limited evidence of a few local disappearances,
and changes in community composition over the last few decades have been attributed to
climate change. A further indication of effects of increased temperatures is revealed in
earlier snowmelt and stream runoff, which affects both aquatic and terrestrial ecosystems
and species. Sensitivity of target organisms to climate change depends on several aspects
of the biology of a species or the ecological composition and functioning of a system. For
example, species that are physiologically sensitive to changes in temperature or moisture;
species that occupy climate-sensitive habitats such as shallow wetlands, perennial
streams, and alpine areas; and species with limited dispersal abilities will all be more
sensitive to climate change. (SAP 4.4, 2008) SAP 4.3 (2008) states that projected
increases in temperature and a lengthening of the growing season will likely extend
forage production into late fall and early spring, thereby decreasing the need for winter-
season forage reserves; that a shift in optimal temperatures for photosynthesis might be
expected under elevated CO₂; and that climate-change-induced shifts in plant species are already underway in rangelands. There is a need to better understand the complexities of ecosystems and the drivers of change within them and to be able to identify the thresholds of these changes in a changing climate.

4.3.2 Moisture Availability

Moisture is so critical to all life forms that its availability has the potential to transform ecosystems abruptly through threshold crossings. Case Study 2 demonstrates the role that prolonged drought and water stress had in a threshold-triggered massive forest-dieback with consequences for erosion and other state changes that will make a return to the pre-threshold forest unlikely. Similarly, changes in available summer moisture have lead to a significant rise in the frequency and severity of wildland fire in the Northern Rocky Mountains (Westerling et al. 2006). Diminished snowpacks that melt earlier in the spring have affected the timing and extent of seasonal wetlands where amphibians breed. A threshold may occur wherein the reduced amphibian population cannot accommodate the necessary shift in the timing of breeding or cannot survive multiple dry years, causing local extinction (Corn 2003).

4.3.3 Climate Interactions

As important as the increases in temperatures and changes in moisture availability are for causing ecosystems to go through thresholds, it is the interactions that are key to driving the change. In general, plants in undisturbed ecosystems are at their moisture-limited capacity for net primary productivity. Therefore, increased temperatures and droughtiness will combine to produce severe stress on plant growth whereas
increased temperatures and increased moisture availability will lessen the stress or may promote plant productivity, leading to an ecosystem with increased resilience. Because evapotranspirative demands on vegetation increase with temperature, thresholds are more likely to occur whenever moisture availability does not simultaneously increase with warming temperatures. The exception is ecosystems that are primarily limited by temperature, such as arctic and alpine ecosystems. In these latter cases, ample moisture means that vegetation can respond without evapotranspirative limits but that threshold changes can still occur as competitive relationships are altered between plant species (Hansell et al. 1998). The shrubbification of the arctic, detailed in Case Study 1, is an example. Case Study 2 makes the importance of interactions clear because trees in the southwestern United States had survived similar droughts in the past but this time temperatures had increased and the interaction of both climatic stressors pushed the ecosystem into threshold change.

Temperature

<table>
<thead>
<tr>
<th>Moisture Availability</th>
<th>Current</th>
<th>Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Drought</td>
<td></td>
<td>Severe drought</td>
</tr>
<tr>
<td>Current No change</td>
<td></td>
<td>Evapotranspirative stress</td>
</tr>
<tr>
<td>Higher Enhanced growth</td>
<td></td>
<td>Enhanced growth with potential threshold Shifts</td>
</tr>
</tbody>
</table>

4.3.4 Climatic Variability Increases

The climate drivers that produce threshold ecosystem responses may be complex and involve the interaction of variability in phenology and weather episodes. The “2007
spring freeze” in the eastern United States is an example. A very warm late winter/early spring period in much of the southeastern United States in 2007 led to budbreak and development of forest canopy 2 to 3 weeks earlier than usual. A very cold Arctic air mass spread across much of the eastern United States in early April (an event not unusual for that time of year), dropping the low daily temperatures well below freezing for several days. The freeze killed newly formed leaves, shoots, and developing flowers and fruits and resulted in a sharp drop in vegetation greenness (NDVI) across a large swath of the southeast. The severity of impact was species specific, but at one site affected by this episode there was a significant reduction in forest photosynthetic activity for at least several weeks after this event, and the leaf-area index was depressed throughout the summer (Guet et al. 2008). While our understanding of the long-term effects of this episode are unclear, they may likely include significant changes in the forest composition due to mortality and/or increased susceptibility to pests of the more susceptible species if similar episodes occur in the future (IPCC 2007).

4.3.5 Other Human Stressors and Climate Change

The interaction of human stresses on ecosystems (for example, land use change) and climate change may be most evident for lotic ecosystems and may produce threshold responses that each stress alone would not produce. Flow variability over time and space is a fundamental characteristic of lotic ecosystems. It is this temporal and spatial flow variability that defines and regulates biotic composition and key ecosystem processes in streams and rivers (Poff et al. 1997; Palmer et al. 2007). Climate change will alter flow regimes and generate changes to biotic communities in many of these ecosystems, although it is not clear that these flow alterations will produce threshold-type
responses in these systems that have evolved in response to high flow variability.

However, more severe or prolonged droughts in the western U.S. resulting from human-induced climate change will interact with growing water demands to potentially produce hydrologic regime shifts in many drainage basins (Barnett et al., 2008).

Recent empirical evidence suggests that severe droughts can produce more dramatic and long lasting effects (for example, loss of biodiversity) on the biological communities of streams and river ecosystems than do other changes in the flow regime, such as floods (Boulton et al. 1992; Lake, 2004). Studies of drought effects on macroinvertebrates in Australian streams where drought is a common and widespread phenomenon suggest that there may be a significant lag effect that prevents recruitment after drought conditions end (Boulton, 2003). Historical evidence exists of large shifts in river fish communities in response to decades-to-century-scale droughts in the Colorado River basin at the end of the Pleistocene (Douglass et al. 2003), but recent findings indicate large uncertainties in long-term effects of drought on fish (Matthews and Marsh-Matthews, 2003).

Many of the expected changes to flow regimes from climate change are similar to those that result from urbanization and other human alterations of drainages. Among these are increased flashiness of hydrographs and longer periods of low or intermittent flow, higher water temperatures, and simplified biotic assemblages (Paul and Meyer, 2001; Roy et al. 2003; Allan, 2004; Nelson and Palmer, 2007). The increases in urbanization that have occurred and are likely to continue in many regions of the United States will very likely exacerbate climate change effects.
The strongest evidence for potential threshold effects in rivers and streams appears to be the result of combined impacts of high or increasing human water withdrawals and the likelihood of more frequent or longer droughts under a warming climate. Defining a water stress index equivalent to total human water use divided by river discharge, Vorosmarty and others (2000) showed that the combination of projected population and climate change results in substantial increases in water stress over large areas of the eastern and southwestern United States. In an analysis of sustainable water use in the United States, the Electric Power Research Institute (EPRI) (2003) reported that total freshwater withdrawal exceeded 30% of available precipitation over much of the semiarid and arid regions of the United States and over large areas of Florida and other metropolitan areas in the east. High rates of human water use reduce flow and extend low flow periods, restricting and degrading habitat for river and stream biota.

Using two scenarios from the 2001 IPCC report, Xenopoulos and others (2005) reported that the combination of climate change and increased water withdrawal may result in loss of up to 75% of the local fish biodiversity in global river basins.

There are several examples of potential large-scale threshold responses to the combined effects of human water management and climate-induced drought. In the Columbia River basin of the Pacific northwest, multiple stressors, including population growth; conflicts between hydropower, agriculture, and recreation interests; and ineffective water management institutions and structures, have increased the vulnerability of water resources (Payne et al., 2004; Miles et al. 2007) already vulnerable as a result of reduced winter snowpack (Barnett et al., 2005), which generates much of the summer flow, and sustained or repetitive droughts projected by climate change models that would
drive water supplies to extreme low levels. Because salmon populations are under
considerable stress because of dams, water withdrawals, and other human actions,
reduced summer flow under a warmer climate may exceed population sustainability
thresholds (Neitzel et al., 1991).

The Colorado River supplies much of the water needs of a large area of the
western United States and northern Mexico. The lower portions of the river have become
highly vulnerable to drought due to increase in demand from population increases. A
long-term drought beginning about 2000 has lowered water levels considerably in Lakes
Powell and Mead and many climate models project future conditions that will eventually
lead to the drying up of Lake Powell and reduced flow in the Colorado River by more
than 20%. Water allocations for maintaining the ecological integrity of natural
communities could drop below thresholds that ensure their viability as scarce water is

Even in the humid southeastern United States, the combined effects of increased
water withdrawals and climate change may exceed thresholds in ecosystem response. The
Chattahoochee-Apalachicola River basin in Alabama, Florida, and Georgia is both an
important water source for agricultural, industrial, and municipal uses and an important
fishery. More than 75% of the fish species inhabiting this river system depend on access
to floodplain and tributary areas to forage and spawn, and there are flow thresholds below
which fish cannot move into these critical areas (Light et al. et al. 1998). Analysis of
projected future water withdrawals and climate change for the Chattahoochee-
Apalachicola River basin indicates that by 2050, minimum flows will drop below these
minimum flow thresholds for at least 3 months in summer in some areas (Gibson et al
al. 2005). Further exacerbating this situation will be the increased percentage of flow that
is wastewater effluent with lower minimum flows in this rapidly urbanizing basin, which
will increase biological oxygen demand and reduce dissolved oxygen concentrations
potentially below threshold levels required by some species of fish (Gibson et al. et al.
2005).

The drying up of streams and wetlands represents thresholds that involve
contraction or elimination of entire aquatic ecosystems. Prairie rivers, streams, and
wetlands of the Great Plains may be particularly vulnerable to these types of thresholds
because of the combined effects of water withdrawals for agricultural and municipal uses
and projected climate changes that will result in longer periods of drought (Johnson et al.,
2005). For example, since the late 1970s, the Arkansas River and many of its tributaries
in Kansas have had long periods of dry channels because of extensive surface and
groundwater use in its drainage basin (Dodd et al. et al. 2004). The drying up of
headwater streams and even some larger streams and rivers for extended periods may
become common in wetter areas of the United States as well, particularly as a result of
the combined effects of increased water withdrawal and climate change.

Riparian ecosystems are also vulnerable to drought-related thresholds, particularly
in the more arid regions of the United States. Riparian forests dominated by cottonwood
are being replaced by drought-tolerant shrubs along some rivers in the western United
States. Increased surface and groundwater withdrawals combined with drought have
resulted in the replacement of riparian forests of native cottonwood (Populus fremontii)
and willow (Salix gooddingii) by an invasive shrub (Tamarix ramosissima), resulting in
reduced animal species richness, diversity, and abundance over extensive areas along the
San Pedro River in Arizona (Lite and Stromberg, 2005). Surface flow and the depth to groundwater appear to be the primary controls on riparian vegetation, with loss of native riparian communities when rivers and streams drop below flow permanence thresholds of 50% to 75% (Stromberget al. et al. 2005, 2007).

4.3.6 Ecosystem Vulnerability and Climate Change

Ecosystems are very likely to differ significantly in their potential for climate change to impact them to the point that thresholds are crossed and substantial alterations occur. Given the magnitude and pervasiveness of climate change, it is surprising how little is known regarding the sensitivity of different ecosystems to any single aspect of climate change (such as increased temperatures), and even less is known about the impacts of multiple climate change factors. This lack of basic understanding represents a critical knowledge gap and research challenge, one that is further complicated by the fact that climate change is only one component of global change and that multiple alterations to climate, biogeochemical cycles, and biodiversity are occurring in tandem.

General hypotheses, however, can be posed and predictions made about some of the ecosystem attributes that may be important in generating differential ecosystem vulnerability to climate change, including the likelihood that important thresholds of response are crossed. For example, most ecosystems have a single or just a few dominant species that mediate ecological processes, control the majority of the resources (including space), and/or have disproportionate impacts on species interactions. Thus, if climate change favors a new dominant species, the prediction is that it will likely be the rate at which the extant species can be replaced and the traits of these new species that will determine the likelihood that the ecosystem will be altered significantly to result in
threshold behavior in state or function. For example, ecosystems dominated by long-lived species (for example, trees) with slow population turnover would be expected to be relatively slow to respond to climate change whereas those ecosystems dominated by short-lived species (for example, annual plants) are expected to be more vulnerable to experiencing substantial change if the new dominant species replacing the old have very different species traits.

Ecosystems can differ dramatically in the sizes of key carbon and nutrient pools, as well as rates of biogeochemical transformations and turnover. These attributes may also determine the rate and magnitude of ecosystem response to climate change if climate forcings influence these biogeochemical attributes. For example, ecosystems with large nutrient pools and/or slow turnover rates are expected to respond minimally to climate change-induced alterations in nutrients. In contrast, ecosystems with limited nutrient pools and rapid biogeochemical cycling are expected to be more vulnerable to climate change that results in critical thresholds being crossed. The general hydrologic balance of ecosystems would similarly impact ecosystem sensitivity to any climate change that affects water availability. In general, those ecosystems with a precipitation-to-potential evapotranspiration ratio near or below 1:1 will be predicted to be more vulnerable to change than ecosystems where this ratio is greater than 1:1.

Levels of biodiversity (functional traits and species) within an ecosystem may also be important in influencing sensitivity to climate change (Grebmeier 2006). The number and traits of species may buffer ecosystems from change and influence the extent to which immigration of new species will occur. For example, depending on how well species in an ecosystem functionally complement each other and the ability of species to
compensate for the change resulting from the loss of the dominant species, the
replacement of a dominant species by another species could result in no change or large
changes in ecosystem state. Similarly, invading species may result in the rapid crossing
of thresholds or may have little or no impact depending on the traits of these species
relative to the traits of native species.

Finally, interactions with the natural disturbance regime inherent in an ecosystem,
other climate change factors, and other global changes, such as habitat fragmentation and
species invasions, will more than likely influence whether or not ecosystems cross
response thresholds and experience substantial amounts of change in their structure and
function. For example, ecosystems that are historically prone to fire may experience more
frequent fires with climate change, making them more susceptible to invasions by exotic
species as resources become available post-fire.
Chapter 5—What Can Be Done?

Because there is significant potential for abrupt or threshold-type changes in ecosystems in response to climate change, what changes must be made in existing management models, premises, and practices to manage these systems in a sustainable, resilient manner? What can be managed and at what scales, given that climate change is global in nature but manifests itself at local and regional scales of ecosystems? This section reviews the management models that predict how ecosystems will respond to climate change and examines their adequacy for addressing threshold behavior.

5.1 Integration of Management and Research

With ongoing climate change and the threat that ecosystems will experience threshold changes, managers and decisionmakers are facing more new challenges than ever. Strong partnerships between research and management can help in identifying and providing adaptive management responses to threshold crossings. Because decisionmakers are dealing with whole new ecosystem dynamics, the old ways of managing change do not apply. A new paradigm in which research and management work closely together is needed. The following sections highlight some of the needs of managers.

5.1.1 Need for Conceptual Models

Most frameworks for nonlinear ecosystem behavior are hierarchical so a small number of structuring processes control ecosystem dynamics; each process operates at its own temporal and spatial scale (O’Neill et al., 1986). Finer scales provide the mechanistic understanding for behavior at a particular scale, and broader scales provide
the constraints or boundaries on that behavior. Functional relationships between pattern and process are consistent within each domain of scale so that linear extrapolation is possible within a domain (Wiens, 1989). Thresholds occur when pattern-and-process relationships change rapidly with a small or large change in a pattern or environmental driver (Bestelmeyer, 2006; Groffman et al., 2006), although both external stochastic events and internal dynamics can drive systems across thresholds (Scheffer et al., 2001).

Crossing a threshold can result in a regime shift where there is a change in the direction of the system and the creation of an alternative stable state (Allen and Breshears, 1998; Davenport et al., 1998; Walker and Meyers, 2004). Under some conditions, thresholds may be recognized when changes in the rate of fine-scale processes within a defined area propagate to produce broad-scale responses (Gunderson and Holling, 2002; Redman and Kinzig, 2003). In these cases, fine-scale processes interact with processes at broader scales to determine system dynamics. A series of cascading thresholds can be recognized where crossing one pattern-and-process threshold induces the crossing of additional thresholds as processes interact (Kinzig et al., 2006).

5.1.2 Scaling

Recent theories and ideas about system behavior have used hierarchy theory as a basis for describing interactions among processes at different scales. Such theories include complex systems (Milne, 1998; Allen and Holling, 2002), self-organization (Rietkerk et al., 2004), panarchy (Gunderson and Holling, 2002), and resilience (Holling, 1992; Walker et al., 2006). Cross-scale interactions (CSIs) (processes at one spatial or temporal scale interacting with processes at another scale that often result in nonlinear dynamics with thresholds) are an integral part of all of these ideas (Carpenter and Turner,
These interactions generate emergent behavior that can not be predicted based on observations at single or multiple, independent scales (Michener et al., 2001). Cross-scale interactions can be important for extrapolating information about fine-scale processes to broad-scales or for down-scaling the effects of broad-scale drivers on fine-scale patterns (Ludwig et al., 2000; Diffenbaugh et al., 2005). The relative importance of fine- or broad-scale pattern-and-process relationships can vary through time and compete as the dominant factors controlling system dynamics (e.g., Rodó et al., 2002; King et al., 2004; Yao et al., 2006).

Because CSI-driven dynamics are believed to occur in a variety of systems, including lotic invertebrate communities in freshwater streams (Palmer et al., 1996) and lakes (Stoffels et al., 2005), mouse populations in forests (Tallmon et al., 2003), soil microbial communities (Smithwick et al., 2005), coral reef fish recruitment in the ocean (Cowen et al., 2006), human diseases (Rodó et al., 2002), and grass-shrub interactions in deserts (Peters et al., 2006), it is critical that ecologists find ways to measure CSI. It is important to identify the key processes involved in these changing pattern-and-process relationships so that thresholds can, at a minimum, be understood and predicted if not averted through proactive measures.

Recently, a framework was developed to explain how patterns and processes at different scales interact to create nonlinear dynamics (Peters et al., 2007). This framework focuses on intermediate-scale properties of transfer processes and spatial heterogeneity to determine how pattern-and-process relationships interact from fine to broad scales (fig. 5.1). In this framework, within a domain of scale (that is, fine, intermediate, or broad), patterns and processes can reinforce one another and be relatively
stable. Changes in external drivers or disturbances can alter pattern-and-process relationships in two ways.

First, altered patterns at fine scales can result in positive feedbacks that change patterns to the point that new processes and feedbacks are induced. This shift is manifested in a nonlinear threshold change in pattern and process rates. For example, in arid systems, disturbance to grass patches via heavy livestock grazing can reduce the competitive ability of grasses and allow shrub colonization. After a certain density of shrubs is reached in an area and vectors of propagule transport (for example, livestock, small animals) are available to spread shrubs to nearby grasslands, shrub colonization and grass loss can become controlled by dispersal processes rather than by competition. Shrub expansion rates can increase dramatically (Peters et al., 2006). As shrub colonization and grazing diminish grass cover over large areas, broad-scale wind erosion may govern subsequent losses of grasses and increases in shrub dominance. These broad-scale feedbacks downscale to overwhelm fine-scale processes in remnant grasslands. Once erosion becomes a pervasive landscape-scale process, neither competition nor dispersal effects have significant effects on grass cover.

Second, direct environmental effects on pattern-and-process relationships at broad scales can similarly overwhelm fine-scale processes. For example, regional, long-term drought can produce widespread erosion and minimize the importance of local grass cover or shrub dispersal to patterns in grasses and shrubs.
5.1.3 Applying Models from Other Disciplines

Climate is, by definition, interdisciplinary. Recent and global environmental changes, including climatic change, changes in atmospheric composition, land-use change, habitat fragmentation, pollution, and the spread of invasive species, have the potential to affect the structure and functions of some ecosystems, and the services they provide. Many ecological effects of global environmental change have the potential for feedbacks (either positive or negative) to climatic and other environmental changes. Furthermore, because many global environmental changes are expected to increase in magnitude in the coming decades, the potential exists for more significant effects on ecosystems and their services.
As climate change manifests itself at local and regional scales of ecosystems, it is necessary not only to downscale forecasting models but also to ensure that models used for predictions take into account not just the physical parameters that support ecosystems but also the biotic aspects of the ecosystems. Biomes and ecosystems do not shift as entities in response to climate change, but they change through the responses of individual species (Scott and Lemieux, 2005). The biogeochemical, temperature, and precipitation requirements of individual species need to be taken into account when predicting these shifts thus the need for the use of interdisciplinary models that address these variables and their dynamic feedback. Our current understanding suggests that using interdisciplinary models will very likely reduce scientific uncertainties about the potential effects of global change on ecosystems and provide new information on the effects of feedbacks from ecosystems on global change processes. The challenge is to create a framework in which interdisciplinary models can work interactively to consider all the feedbacks involved.

5.2 Adaptive Management to Increase Resilience

The process of selecting, implementing, monitoring, assessing, and adjusting management actions is called adaptive management or, in the context of this report, adaptive ecosystem management (AEM) (Holling 1978; Walters 1986; Prato 2004, 2007a). AEM can be done passively or actively. If passive AEM is used, the decision to adjust management actions or not depends on whether the indicators or multiple attributes of the outcomes of management actions suggest that the ecosystem is becoming more resilient or more variable and might cross a threshold. If active AEM is used, the decision of whether or not to adjust management actions is determined by testing...
hypotheses about how the ecosystem state is responding to management actions. Active
AEM treats management actions as experiments. Unlike passive adaptive management,
active AEM yields statistically reliable information about ecosystem responses to
management actions although it is more expensive and difficult to apply than passive
AEM and requires sufficient monitoring (Lee 1993, Wilhere 2002).

To increase ecosystem resilience, a number of approaches have been put forth for
use in adaptive management. These include avoiding landscape fragmentation and its
converse, restoring connectivity; ensuring that refugia are protected so that recolonization
of species is possible; focusing protection on keystone species where applicable; reducing
other stressors such as pollution; removing introduced invasive species; and reducing
extraction of ecosystem services for humans (for example, ensuring water flows for
aquatic ecosystems under stress) (Scott and Lemieux 2005, Groffman et al. 2006). For
each ecosystem, AEM potentially provides quantitative documentation as to the relative
efficacy of the different approaches to improving resilience (Keeley 2006; Millar et al.
2007: Parker et al. 2007).

5.2.1 Role of Monitoring

Because climate change effects are likely to interact with patterns and processes
across spatial and temporal scales, it is clear the monitoring strategies must be integrated
across scales. First and foremost, the Earth’s surface must be hierarchically stratified [for
example, using the U.S. Department of Agriculture (USDA)-National Resources
Conservation Service (NRCS) Major Land Resource Area/Ecological Site Description
System and U.S. Forest Service ecoregions], and conceptual or simulation models of
possible impacts must be specified for each stratum (Herrick et al., 2006). The models
are used to develop scenarios and to identify key properties and processes that are likely
to be associated with abrupt changes. Second, simultaneous multiple-scale monitoring
should be implemented at up to three spatial scales based on these scenarios and the
recognition of pattern-and-process coupling developed in the models (Bestelmeyer,
2006), which may feature cross-scale interactions (Peters et al., 2004).

Remote sensing platforms can be used to monitor some broad-scale spatial
patterns, including significant shifts in plant community composition, vegetation
production, changes in plant mortality, bare ground and soil and water surface
temperatures, and water clarity. These platforms may also be used to detect rates of
change in some contagious processes, such as the spread of readily observable invasive
species. Changes in variance across space and time derived from such measures may be a
primary indicator of incipient nonlinear change (Carpenter and Brock, 2004). These
measures should be coupled with ground-based measures at mesoscale to patch scales.
Mesoscale monitoring often requires widely distributed observations across a landscape
(or ocean) acquired with rapid methodologies including sensor networks. Such widely
distributed monitoring is necessary because incipient changes may materialize in
locations that are difficult to predict in advance (such as with tidal wave warning
systems). In other cases, however, more targeted monitoring is necessary to detect
mesoscale discontinuities in smaller areas that are likely to first register broad-scale
change, such as at ecotone boundaries (Neilson, 1993). Finally, patch-scale monitoring
can feature methodologies that focus on pattern-and-process linkages that scale up to
produce systemwide threshold changes, such as when vegetation patches degrade and
bare patches coalesce to result in desertification (Rietkerk et al., 2004; Ludwig et al.,
2005). The involvement of land users is particularly important at this scale because
recognition of processes that degrade resilience may be used to mitigate climate-driven
thresholds by way of local management decisions. Consequently, technically-
sophisticated approaches should be balanced with techniques suitable for the public at
large (for example, Carpenter et al., 1999; Pyke et al., 2002).

Monitoring data across scales must then be integrated, and interpretations
generated for key strata. Ground-based monitoring, for example, may reveal key changes
not detected through remote sensing, or conversely, remote sensing may explain
apparently idiosyncratic patterns in ground-based data to reveal key vulnerabilities.

Multiagency institutions and a “network of networks” could be organized with such
efforts in mind and could periodically review data gathered across scales and from
different partners (Parr et al., 2003; Betancourt et al., 2007; Peters et al., 2008).

Nutrient export via streamflow is a sensitive metric for identifying changes in
ecosystem structure and function at the watershed scale that may be difficult to detect on
complex and spatially heterogeneous systems. For example, nitrate concentration in
streams has been used as a sensitive indicator of forest nitrogen saturation (Stoddard,
1994; Swank and Vose, 1997; Lovett et al., 2000; Aber et al., 2003), effects of insect pest
outbreaks (Eshleman et al., 1998), and effects of short-term climate perturbations
(Mitchell et al., 1996; Aber et al., 2002). Stream chemistry monitoring, particularly at
gauges sites where discharge is also monitored, can provide sensitive signals of changes
in ecosystem biogeochemical cycles.

5.2.2 Role of Experiments
It is critical to identify the conditions or systems that are susceptible to threshold behavior and interactions across scales that include transport processes at intermediate scales. One approach is to measure responses at multiple scales simultaneously and then test for significant effects of variables at each scale (for example, Smithwick et al., 2005; Stoffels et al., 2005). Experimental manipulations can also be used to examine processes at fine and intermediate scales and to isolate and measure impacts of broad-scale drivers under controlled conditions (for example, Palmer et al., 1996; King et al., 2004).

Stratified-cluster experimental designs are methods for considering multiple scales in spatial variables and for accounting for distance as related to transport processes in the design (Fortin et al., 1989; King et al., 2004). Regression (gradient)-based experimental designs may be superior to analysis of variance (ANOVA)-type designs for predicting thresholds in ecological response to linear or gradual changes in climate or other drivers.

Quantitative approaches also show promise in identifying key processes related to threshold behavior. Statistical analyses based on nonstationarity (Rodó et al., 2002) and nonlinear time series analysis (Pascual et al., 2000) are useful for identifying key processes at different scales. Spatial analyses that combine traditional data layers for fine- and broad-scale patterns with data layers that use surrogates for transfer processes at intermediate scales (for example, seed dispersal) can isolate individual processes and combinations of processes that influence dynamics in both space and time (for example, Yao et al., 2006). Simulation models that use fine-scale models to inform a broad-scale model can be used to examine the relative importance of processes and drivers at different scales to system dynamics as well as interactions of processes and drivers (Moorcroft et al., 2001; Urban, 2005). Coupled biological and physical models that
include population processes and connectivity among populations as well as broad-scale
drivers have been used to show the conditions when connectivity is important, and to
identify the locations that are more susceptible or resilient to management decisions
(Cowen et al., 2006).

5.3 Management by Coping

If there is a high potential for abrupt or threshold-type changes in ecosystems in
response to climate change, existing management models, premises, and practices must
be modified in order to manage these systems in a sustainable, resilient manner (Millar et
al. 2007). Existing management paradigms may have some limited value because of the
assumption that the future will be similar to the past; this assumption, however, fails to
take into account the underlying uncertainty of the trajectories of ecological succession in
the face of climate change. Managers can instead take a dynamic approach to natural
resource management, emphasizing processes rather than composition, to best maintain,
restore and enhance ecological functions (Walker et al., 2002; Millar in press). The
following sections address some of the mechanisms that can be used to plan for future
ecosystem resilience and achieve a balance of positive and negative feedbacks (Millar et
al., 2007; Millar in press).

5.3.1 Reducing Multiple Stressors

The key to reducing stressors is to identify the factors that influence resilience. In
many cases management practices that increase resilience can be designed from existing
knowledge; in other cases, however, it is not clear what management practices will
enhance resilience (Millar et al., 2007). For example, connectivity in a fragmented
landscape can be restored by creating corridors for species movement between suitable
habitat patches (Gustafson, 1998). Alternatively, inadvertent connectivity that has been established and utilized by invasive species can be removed to reduce stress on the native populations remaining.

To potentially mitigate for threshold crossing, it is likely that a variety of approaches, including both long-term and short-term strategies based on new information for natural resource management, will need to focus on increasing ecosystem resilience and resistance as well as assisting ecosystems to adapt to the inevitable changes as climates and environments continue to shift (Millar et al. 2007; Parker et al. 2000).

Increasing management adaptive capacity is the operative action taken to increase resilience in ecosystems. For instance, increasing water storage capacity can provide a buffer against reaching the trigger point for a drought-induced threshold crossing that would permanently change an arid-land ecosystem. The concept of critical loads for organisms is well-established but can be productively applied to ecosystems.

Based on gaps in the literature identified through the development process for this SAP and the synthesis team’s expertise, tools to analyze and detect nonlinearity and thresholds from monitoring data will need to be developed. Increases in the variance of an important ecosystem metric have been suggested as an early sign of system instability. As negative feedbacks weaken and positive feedbacks strengthen, the likelihood that a threshold will be reached and crossed increases. As identified by the synthesis team in producing this SAP, there is a need for more nonlinear modeling and statistics to be applied to the threshold issue to identify the point at which positive feedbacks dominate.

5.3.2 Triage
Scientific evidence shows that climate change in the 21st century will most likely result in new vegetation successions, water regimes, wildlife habitat and survival conditions, permafrost and surface ice conditions, coastal erosion and sea-level change, and human responses (Welch 2005). Triage is a process in which things are ranked in terms of importance or priority. The term environmental or ecological triage has been used to describe the prioritization process used by policy makers and decisionmakers to determine targets and approaches to dealing with resource allocation (for example, health of ecosystems) that are in high demand and rapidly changing. In the planning process resource managers can address ecological triage under three different priorities: 1) Status quo or do nothing; 2) Reaction after disturbance; or 3) Proactive intervention (Holt and Viney 2001). Triage is a useful tool to prioritize actions, especially in cases where highly valued resources are at stake, conditions are changing rapidly, and decisions are urgent. The approaches to apply after triage are adaptive management, and mitigation and adaptation strategies. Enabling ecosystems to respond to climate change will help to ease the transition from current to future stable and resilient states, and minimize threshold changes (Fitzgerald 2000; Holt and Viney 2001; Millar et al. 2007; Millar in press).

5.3.3 System-Level Planning and Policy

Expanding management to regional levels is also key because climate change may be pushing ecosystems to regional synchrony. An example is that wildland fire is synchronously increasing throughout the western United States and could lead to major recruitment events for species such as lodgepole pine or trigger beetle outbreaks at unprecedented scales. These recruitment events could lead to supercohorts that develop...
with succession following subcontinental scale disturbance. There is little management precedent for these types of outcomes that are threshold events on a continental scale even if they are common on local scales.

Adaptive management and structured decisionmaking will almost certainly be required to deal with increased temperature effects on threshold crossings and the different trajectories of succession that follow in the western United States. Natural systems are out of sync with climate, leading to the greatest potential for new species combinations in many centuries. Therefore, new actions may be considered, such as planting different tree genotypes after large-scale fires, with appropriate followup monitoring to learn from the results.

5.3.4 Capacity Building and Awareness

There is, and will be, an urgent need to adapt where climate change-induced thresholds are crossed and a new ecosystem state will be a reality for the foreseeable future. Capacity building basically increases the resilience of the socioeconomic system to tolerate different states of natural resources and ecosystem functioning (Scott and Lemieux, 2005). If ecosystems become more variable in providing essential ecosystem services, greater flexibility is needed on the human side. An example is the need to add storage capacity for capturing mountain ecosystem water if a threshold in snow persistence is crossed, leading to smaller and more variable snowpacks. Building stakeholder tolerance for change is part of the adaptation that will be necessary (Scott and Lemieux, 2005).

Adaptation can take many forms. Scenario planning provides descriptions of plausible future conditions. Scenario planning, done at the local level, makes
stakeholders aware of the scope of uncertainty, facilitates tolerance for change, and
motivates the desire to build capacity to better handle threshold changes. Multiscenario
approaches used with ecosystem modeling can also be used to develop a range of
possible post-threshold conditions to better inform strategic decisionmaking and planning
for natural resource managers (Lemieux and Scott 2005). Impact assessments on specific
resources (for example, individual species population viability) can be expanded to
examine the underlying viability of protected areas designed to maintain ecosystems
(Scott et al. 2000). These assessments can prepare managers by broadening the scope of
planning and ensuring that institutional action plans remain flexible.

5.4 Summary

As this synthesis makes clear, climate change increases the likelihood that
ecosystems will undergo threshold changes. The underlying mix of interacting feedback
mechanisms that drive these thresholds are poorly understood. Monitoring of ecosystems
to detect early indicators, such as increasing variability in system behavior, is generally
inadequate even when it is known what aspect of the system to monitor. Based on gaps
in the literature identified by the synthesis team, there is little scientific or natural
resource management experience in dealing with ecosystems undergoing threshold
changes. The degree to which we can reverse a threshold change is largely unknown.
These knowledge gaps present scientists and resource managers with severe challenges in
anticipating and coping with threshold changes to the natural systems.

The gaps identified include the need to increase the resilience of ecosystems and
reduce multiple stressors to avoid threshold crossing. Both of these challenges are
difficult to plan for but also are consistent with managing ecosystems under conditions of uncertainty such as climate change. After a threshold occurs, viable options are to increase coping mechanisms, adaptive capacity, and stakeholder tolerance. The publication of SAP 4.2 will bring the state of scientific understanding to the forefront of the natural resource management paradigm, identifying a need for greater scientific research on thresholds and ecosystem response to adequately manage natural resources for the future.
Chapter 6—Summary and Recommendations

In this document, much of what is understood about thresholds of ecological change is reviewed and summarized. This is a nascent field of inquiry and even the definition of thresholds remains somewhat fluid. Chapter 2 provides a clarification and should help focus future research on this topic.

Summary

The existence of thresholds in the tolerance of ecosystems to climate change should be a key concern of scientists, Federal land managers and other natural resource professionals responsible for the state of national natural resources and the ecological services they provide. Sudden, large-scale changes in ecosystems may present new challenges to resource managers because the capacity to predict, manage and adapt to threshold crossings is currently limited. One goal of resource management is to minimize variance in ecological goods and services but thresholds, as described in this document in Chapter 3, can greatly increase variance. There are numerous other implications of ecosystems crossing response thresholds because the current regulatory and legal frameworks do not account for threshold behavior of systems at present.

Recommendations

Given the knowledge that ecological thresholds exist and the lack of tools to know just where those thresholds are, scientists need to provide better predictive capabilities and managers must make adjustments to increase their capacity to cope with surprises. If climate change is pushing more ecosystems toward thresholds, what can be done at the national level? The SAP 4.2 committee identified potential actions below.
These are organized by actions or approaches that can be taken before, during, and after thresholds of ecological change are crossed.

**Before**

*Develop Better Threshold Knowledge.*—While conceptually robust and widely acknowledged, further advancement and agreement on thresholds of change in ecosystems is limited by the small number of empirical studies addressing this topic. Further advancement will be dependent on rigorous statistical testing for reliable identification of thresholds across different systems and should be a national priority because of the potential for substantive surprises in the management of our natural resources.

*Monitor Multiple Drivers.*—Consideration should be given to monitoring indicators of ecosystem stress rather than solely the resources and ecological services of management interest. Monitoring the effects on vegetation in coastal wetlands due to increased salinity and/or inundation from sea level rise may be able to predict what degree of stress vegetation can endure before it goes beyond the ability to recover (Burkett *et al.*, 2005). Monitoring soil conditions in areas that are susceptible to nonnative species invasions may provide information on when invasive species may appear in a stressed ecosystem and push it to its threshold. Another variation on this theme is to monitor variability rather than mean values of an ecological service. If the amplitude of variability is increasing, this trend is likely an indication of system instability before a threshold is crossed.

*Collate and Integrate Information Better at Different Scales.*—Greater efficiency and use of information is likely to result from coordinating and pooling
information from adjoining jurisdictions and different agencies. For example, trends may not be significant or noticeable at small scales but are clear at larger scales. These and other observations argue for much better integration and coordination of monitoring information, not necessarily more monitoring. Although there is a considerable investment in making monitoring “smarter” initially, the payoff is clear in being able to detect early indicators of ecosystem change that may result in crossing thresholds.

Reduce Other Stressors.—The trigger points for abrupt change in ecosystems that are responding to climate change are rarely known because human civilizations have not witnessed climate change of this magnitude. However, an approach that is likely to reduce the threat of crossing thresholds is to reduce other stressors on ecosystems (Scott and Lemieux, 2005). These other stressors might include air and water pollution, regional landscape fragmentation, and control of invasive plants. To help reduce stressors, decisions could be made to allow larger or more extensive buffers when considering carrying capacity of habitats, minimum habitat sizes for species of interest, or use of ecological services such as water.

During

Manage Threshold Shifts.—There may be constraints to reducing or reversing climate change-induced stresses to components of an ecosystem. If a threshold seems likely to occur but the uncertainties remain high as to when it will occur, contingency plans should be created. These can be implemented when the threshold shift begins to occur or can be carried out in advance if the threshold is clear. An example is a riverine system that experiences an upward trend in water temperature due to climate change and for which no options exist for mitigating the rising temperatures. Fish species that cannot
tolerate water temperatures above a threshold would have to be moved to another river
system or replaced with genotypes or species tolerant of warmer water.

Project Impacts to Water Supply, Biodiversity, and Resource Extraction.—There
are many efforts to project climate change (e.g., GCMs) and ecosystem responses to
climate change (e.g., mapped atmosphere-plant-soil systems) using simulating modeling
and other tools. These models generally project ecosystem trends and shifts, but do not
explicitly consider the possibility of thresholds within the system dynamics of the
modeling. A concerted effort must be made to understand, model, and project ecosystem
responses to climate change with explicit acknowledgment of thresholds. An example is
the bark beetle outbreak occurring in western forests where one threshold was passed
when warmer winters allowed two life cycles of beetle reproduction per year rather than
one and where a second threshold may be passed by the expansion of the forests
northward to connect with boreal forests that provide a corridor eastward. Such a scenario
would lead to continental scale beetle infestation (Logan et al., 1998).

Recognize Need for Subcontinental Decisionmaking.— The scale of some
threshold crossings, such as the bark beetle example above, is likely to require
coordinated decisions on larger scales than in the past.

Instigate Institutional Change To Increase Adaptive Capacity.— The capacity for
synthesis will be critical for identifying potential thresholds in ecosystem processes on
multiple scales. Institutional changes that promote greater interdisciplinary and
interagency scientific and information exchange are likely to increase adaptive capacity
in general. The institutional changes are especially needed to implement comprehensive
monitoring to detect and document responses to thresholds in ecosystems.
Identify Recommendations for Monitoring and Research.— This effort can evaluate the need for specific calls for urgently needed research to address thresholds. The ubiquity of threshold problems across so many fields suggests the possibility of finding common principles at work. The cross-cutting nature of the problem of large-scale system change suggests an unusual opportunity to leverage effort from other fields and apply it to investigating systemic risk of crossing thresholds. Ecological and economic systems share common elements as complex adaptive systems. To the extent that the analogy holds, these two disciplines have potential for mutual leverage. Beyond the specific analogy between ecology and economics, certain dynamic behaviors and structural (topological network) constraints are common to broad classes of systems. Leverage can also occur by sharing methods across disciplines. Diverse fields such as engineering risk analysis, epidemiology, and ecology employ similar methods and research styles. The aim is not to replace conventional approaches, but to explore complementary approaches. Exploiting commonalities is one way that leverage is achieved.

After

Although many of the management responses to thresholds should continue after thresholds have been crossed (e.g. monitoring, building ecosystem resilience), human society will largely be faced with adjusting to different ecosystems. These adaptations may be expensive, requiring significant new infrastructure. Capacity building, scenario planning, and adaptive management must all be applied to quickly improve the ability of management to cope with a different ecosystem and for stakeholders to adjust their expectations of ecosystem services.
Despite the incomplete understanding of thresholds of ecological change and the relative inability to predict when and where they will occur, there have been enough occurrences with significant consequences to warrant consideration of thresholds in natural resource planning and management. This document has summarized much of what is known about thresholds and has suggested approaches to improve our understanding of thresholds, to reduce the chances of threshold crossing, and to enhance the ability to cope with thresholds that have occurred. Given the magnitude of climate change effects on ecosystems, the added factor of sudden, threshold changes complicates societal responses and underscores the importance of continued integration of research and management to develop appropriate strategies for coping with thresholds.
References Cited


forest: Causes, consequences, and pathways to potential solutions of a wicked 

Geol.*, **12**(2), 123–140.

Christensen, T.R., Torbjörn Johansson, H.J. Àkerman, Mihail Mastepanov, Nils Malmer, 

Claussen, Martin, Claudia Kubatzki, Victor Brovkin, Andrey Ganopolski, Phillipp 
Hoelzmann, Hans-Joachim Pachur. 1999. Simulation of an abrupt change in 

Corn, P.S. 2003. Amphibian breeding and climate change: Importance of snow in the 

change and arctic ecosystems: Is lichen decline a function of increases in vascular 


1 Hanski, Ilkka, Peter Turchin, Erkki Korpimaki, and Heikki Henttonen. 1993. Population
2 oscillations of boreal rodents: regulation by mustelid predators leads to chaos. 
8 Agriculture. In: The effects of climate change on agriculture, land resources, 
9 water resources, and biodiversity. Synthesis and assessment product 4.3 by the 
10 U.S. climate change science program and the subcommittee on global change 
11 research, Washington, DC, USA.
13 integrated framework for science-based arid land management. Journal of Arid 
14 Environments, 65, 319–335.
16 and Ecosystem Coupling: Abrupt Changes and Multiple Equilibria. Philosophical 
17 Transactions of the Royal Society of London Series B–Biological Sciences 357: 
18 647-55.
19 Hinzman L.D., N.D. Bettez, W.R. Bolton, F.S. Chapin, M.B. Dyrgerov, C.L. Fastie, 
20 Brad Griffith, R.D. Hollister, Allen Hope, H.P. Huntington, A.M. Jensen, G.J. Jia, 
21 Torre Jorgenson, D.L. Kane, D.R. Klein, Gary Kofinas, A.H. Lynch, A.H. Lloyd, 
23 Romanovsky, R.S. Stone, D.A. Stow, Matthew Sturm, C.E. Tweedie, G.L.


mortality during drought: why do some plants survive while others succumb to
8137.2008.02436.x.

interactions: workshop on climate change and disturbance interactions in western

Michener, William K., Thomas J. Baerwald, Penelope Firth, Margaret A. Palmer, James
L. Rosenberger, Elizabeth A. Sandlin, and Herman Zimmerman. 2001. Defining

Northwest Regional Assessment: The impacts of climate variability and climate
change on the water resources of the Columbia River Basin. *J. American Water
Resources Assoc.* 36:399-420.

Millar, C.I., N.L. Stephenson, and S.L. Stephens. 2007. Climate change and forests of the
future: managing in the face of uncertainty. *Ecological Applications* 17:2145-
2151.

Millenium Ecosystem Assessment. 2005. Ecosystems 1(5): 449-456 and human wWell-
being: Biodiversity Synthesis. World Resources Institute, Washington, D.C.


Milne, Bruce T. 1998. Motivation and benefits of complex systems approaches in
ecology.


Stoddard, J.L., D.S. Jeffries, A. Lükewille, T.A. Clair, P.J. Dillon, C.T. Driscoll, M.


Monteith, P.S. Murdoch, S. Patrick, A. Rebsdorf, B.L. Skjelvåle, M.P. Stainton,

T. Traaen, H. van Dam, K.E. Webster, J. Wieting, and A Wilander. 1999.

Regional trends in aquatic recovery from acidification in North America and


Stoffels, R.J., K.R. Clarke, and G.P. Closs, 2005. Spatial scale and benthic community

organization in the littoral zones of large oligotrophic lakes: potential for cross-

scale interactions. Freshwater Biology 50(7):1131-1145.

Stone, R.S., E.G. Dutton, J.M. Harris, and D. Longnecker. 2002. Earlier spring snowmelt

in northern Alaska as an indicator of climate change. Geophysical Research

107:4089,


Knowles. 2005. Tracking the Arctic’s shrinking ice cover; another extreme


Effects of stream flow intermittency on riparian vegetation of a semiarid region


Importance of low-flow and high-flow characteristics to restoration of riparian


U.S. Forest Service. 2006. Forest insect and disease conditions in the Southwestern
Southwestern Region, NM. 34 p.

2006.

Ames, IA. 400 pp.

van Mantgem, P.J., N.L. Stephenson, J.C. Byrne, L.D. Daniels, J.F. Franklin, P.Z. Fulé,
increase of tree mortality rates in the western United States. In review at *Science*
(in review)..

van Mantgem, P.J., and N.L. Stephenson. 2007. Apparent climatically-induced increase

Veenhuis, J. 2002. Effects of wildfire on the hydrology of Capulin and Rito de los
Frijoles Canyons, Bandelier National Monument, New Mexico. Albuquerque,

**75**(7), 1861–1876.

Model estimation of land-use effects on water levels of northern prairie wetlands.

Ecological Applications 17:527-540.


Appendix A—Glossary

adaptive capacity
the capacity of organisms, both individuals and groups, to respond to and change in the state of the system (Folke et al., 2003; Walker et al., 2004; Adger et al., 2005); depends on initial diversity and the capacity of component organisms to adjust and change
degradation
deterioration of a system to a less desirable state as a result of failure to actively adapt or transform
ecosystem
all the organisms, including people, in an area and the nonbiological materials, such as water and soil minerals, with which they interact
ecosystem services
benefits that people derive from ecosystems, including supporting, provisioning, regulating, and cultural services
exogenous factor
factor external to the system being managed and which therefore is not incorporated into the management framework
exposure
nature and degree to which the system experiences environmental or sociopolitical stress
mitigation
reduction in the exposure of a system to a stress or hazard
negative feedbacks
interaction in which the effects of two interacting components on one another have opposite signs; generally buffer against changes in the system; an important mechanism enhancing resilience

**positive feedback**

interaction in which the effects of two interacting components on one another have the same sign (both positive or both negative); tend to amplify changes in the system, leading to threshold changes in the system

**resilience**

capacity of a socioecological system to absorb a spectrum of shocks or perturbations and continue to develop with similar fundamental function, structure, identity, and feedbacks, *i.e.*, to remain within a given stability domain (Holling, 1973; Gunderson and Holling, 2002; Walker *et al.*, 2004; Folke, 2006a); includes adaptive capacity but also depends on legacies (*e.g.*, seed banks) and strong negative feedbacks that might balance positive feedbacks that might destabilize the system

**socioecological system**

system in which human activities depend on resources and services provided by ecosystems and ecosystem organization is influenced, to varying degrees, by human activities

**steady state**

condition of a system in which there is no net change in system structure or functioning over the time scale of study

**sustainability**
use of the environment and resources to meet the needs of the present without
compromising the ability of future generations to meet their own needs

threshold

an abrupt persistent change in system structure or functioning in response to small
changes in an ecosystem driver

vulnerability

the degree to which a system is likely to experience harm due to exposure to a specified
hazard or stress (Turner et al., 2003; Adger, 2006)